First Order Extensions of Residue Classes and Uniform Circuit Complexity

  • Argimiro Arratia
  • Carlos E. Ortiz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8071)


The first order logic \(\mathcal{R}ing(0,+,*,<)\) for finite residue class rings with order is presented, and extensions of this logic with generalized quantifiers are given. It is shown that this logic and its extensions capture DLOGTIME-uniform circuit complexity classes ranging from AC 0 to TC 0. Separability results are obtained for the hierarchy of these logics when order is not present, and for \(\mathcal{R}ing(0,+,*,<)\) from the unordered version. These separations are obtained using tools from class field theory, adapting notions as the spectra of polynomials over finite fields to sets of sentences in this logic of finite rings, and studying asymptotic measures of these sets such as their relative densities. This framework of finite rings with order provides new algebraic tools and a novel perspective for descriptive complexity.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ax, J.: Solving diophantine problems modulo every prime. Ann. of Math. 85(2), 161–183 (1967)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Ax, J.: The elementary theory of finite fields. Ann. of Math. 88(2), 239–271 (1968)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Barrington, D., Immerman, N., Straubing, H.: On uniformity within NC1. J. Computer and Syst. Sci. 41, 274–306 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Boppana, R., Sipser, M.: The complexity of finite functions. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science. Algorithms and Complexity, vol. A, pp. 757–804. Elsevier (1990)Google Scholar
  5. 5.
    Borodin, A.: On relating time and space to size and depth. SIAM J. Comput. 6(4), 733–744 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Ebbinghaus, H.D., Flum, J.: Finite Model Theory. Springer (1995)Google Scholar
  7. 7.
    Friedlander, J., Iwaniec, H.: Using a parity-sensitive sieve to count prime values of a polynomial. Proc. Natl. Acad. Sci. USA 94, 1054–1058 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Immerman, N.: Descriptive Complexity. Springer (1998)Google Scholar
  9. 9.
    Gerst, I., Brillhart, J.: On the prime divisors of polynomials. American Math. Monthly 78(3), 250–266 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Lagarias, J.C.: Sets of primes determined by systems of polynomial congruences. Illinois J. Math. 27(2), 224–239 (1983)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Wyman, B.F.: What is a Reciprocity Law? American Math. Monthly 79(6), 571–586 (1972)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Argimiro Arratia
    • 1
  • Carlos E. Ortiz
    • 2
  1. 1.LSIUniversitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.Arcadia UniversityGlensideU.S.A.

Personalised recommendations