Advertisement

Development of Renal Function in the Fetus and Newborn

  • Lyndsay A. Harshman
  • Patrick D. Brophy
Chapter

Abstract

Fetal renal function is inherently related to fetal development, and management of preterm infants requires knowledge of renal developmental stage in conjunction with gestational age and/or post-menstrual age. A variety of factors, including maternal health and gestational medication use, may result in renal dysfunction even in term infants. Optimal prenatal and postnatal care in cases of suspected renal dysfunction is required to decrease the likelihood of long-term renal disease into adulthood.

Keywords

Renal Blood Flow Atrial Natriuretic Factor Renal Vascular Resistance Fetal Kidney Fetal Sheep 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kumar KU, Pillay VV (1996) Estimation of fetal age by histological study of kidney. Med Sci Law 36(3):226–230PubMedGoogle Scholar
  2. 2.
    Igarashi P (1994) Transcription factors and apoptosis in kidney development. Curr Opin Nephrol Hypertens 3(3):308–317PubMedGoogle Scholar
  3. 3.
    Dressler GR (2002) Development of the excretory system. In: Rossant J, Patrick T (eds) Mouse development, patterning, morphogenesis, and organogenesis. Academic, New York, pp 395–420Google Scholar
  4. 4.
    Bouchard M, Souabni A, Mandler M, Neubuser A, Busslinger M (2002) Nephric lineage specification by Pax2 and Pax8. Genes Dev 16(22):2958–2970PubMedCentralPubMedGoogle Scholar
  5. 5.
    Dressler GR (2006) The cellular basis of kidney development. Annu Rev Cell Dev Biol 22:509–529PubMedGoogle Scholar
  6. 6.
    Costantini F, Shakya R (2006) GDNF/Ret signaling and the development of the kidney. Bioessays 28(2):117–127PubMedGoogle Scholar
  7. 7.
    Brophy PD, Ostrom L, Lang KM, Dressler GR (2001) Regulation of ureteric bud outgrowth by Pax2-dependent activation of the glial derived neurotrophic factor gene. Development 128(23):4747–4756PubMedGoogle Scholar
  8. 8.
    Dressler GR, Douglass EC (1992) Pax-2 is a DNA-binding protein expressed in embryonic kidney and Wilms tumor. Proc Natl Acad Sci U S A 89(4):1179–1183PubMedCentralPubMedGoogle Scholar
  9. 9.
    Dressler GR, Wilkinson JE, Rothenpieler UW, Patterson LT, Williams-Simons L, Westphal H (1993) Deregulation of Pax-2 expression in transgenic mice generates severe kidney abnormalities. Nature 362(6415):65–67PubMedGoogle Scholar
  10. 10.
    Kreidberg JA, Sariola H, Loring JM et al (1993) WT-1 is required for early kidney development. Cell 74(4):679–691PubMedGoogle Scholar
  11. 11.
    Rauscher FJ 3rd (1993) The WT1 Wilms tumor gene product: a developmentally regulated transcription factor in the kidney that functions as a tumor suppressor. FASEB J 7(10):896–903PubMedGoogle Scholar
  12. 12.
    Mugrauer G, Ekblom P (1991) Contrasting expression patterns of three members of the myc family of protooncogenes in the developing and adult mouse kidney. J Cell Biol 112(1):13–25PubMedGoogle Scholar
  13. 13.
    Mugrauer G, Alt FW, Ekblom P (1988) N-myc proto-oncogene expression during organogenesis in the developing mouse as revealed by in situ hybridization. J Cell Biol 107(4):1325–1335PubMedGoogle Scholar
  14. 14.
    Trudel M, D’Agati V, Costantini F (1991) C-myc as an inducer of polycystic kidney disease in transgenic mice. Kidney Int 39(4):665–671PubMedGoogle Scholar
  15. 15.
    Bacallao R, Fine LG (1989) Molecular events in the organization of renal tubular epithelium: from nephrogenesis to regeneration. Am J Physiol 257(6 Pt 2):F913–F924PubMedGoogle Scholar
  16. 16.
    Hammerman MR, Rogers SA, Ryan G (1992) Growth factors and metanephrogenesis. Am J Physiol 262(4 Pt 2):F523–F532PubMedGoogle Scholar
  17. 17.
    Toback FG, Walsh-Reitz MM, Mendley SR, Kartha S (1990) Kidney epithelial cells release growth factors in response to extracellular signals. Pediatr Nephrol 4(4):363–371PubMedGoogle Scholar
  18. 18.
    Avner ED, Sweeney WE Jr (1990) Polypeptide growth factors in metanephric growth and segmental nephron differentiation. Pediatr Nephrol 4(4):372–377PubMedGoogle Scholar
  19. 19.
    Sariola H, Ekblom P, Lehtonen E, Saxen L (1983) Differentiation and vascularization of the metanephric kidney grafted on the chorioallantoic membrane. Dev Biol 96(2):427–435PubMedGoogle Scholar
  20. 20.
    Sariola H, Saarma M, Sainio K et al (1991) Dependence of kidney morphogenesis on the expression of nerve growth factor receptor. Science 254(5031):571–573PubMedGoogle Scholar
  21. 21.
    Rogers SA, Ryan G, Hammerman MR (1992) Metanephric transforming growth factor-alpha is required for renal organogenesis in vitro. Am J Physiol 262(4 Pt 2):F533–F539PubMedGoogle Scholar
  22. 22.
    Alpers CE, Seifert RA, Hudkins KL, Johnson RJ, Bowen-Pope DF (1992) Developmental patterns of PDGF B-chain, PDGF-receptor, and alpha-actin expression in human glomerulogenesis. Kidney Int 42(2):390–399PubMedGoogle Scholar
  23. 23.
    Rudolph AM, Heymann MA (1973) Control of the fetal circulation. In: Hafez ES (ed) The mammalian fetus: comparative biology and methodology. Charles C Thomas, Springfield, pp 5–19Google Scholar
  24. 24.
    Paton JB, Fisher DE, Peterson EN, DeLannoy CW, Behrman RE (1973) Cardiac output and organ blood flows in the baboon fetus. Biology Neonat 22(1):50–57Google Scholar
  25. 25.
    Aperia A, Broberger O, Herin P, Joelsson I (1977) Renal hemodynamics in the perinatal period. A study in lambs. Acta Physiol Scand 99(3):261–269PubMedGoogle Scholar
  26. 26.
    Robillard JE, Weismann DN, Herin P (1981) Ontogeny of single glomerular perfusion rate in fetal and newborn lambs. Pediatr Res 15(9):1248–1255PubMedGoogle Scholar
  27. 27.
    Gruskin AB, Edelmann CM Jr, Yuan S (1970) Maturational changes in renal blood flow in piglets. Pediatr Res 4(1):7–13PubMedGoogle Scholar
  28. 28.
    Jose PA, Logan AG, Slotkoff LM, Lilienfield LS, Calcagno PL, Eisner GM (1971) Intrarenal blood flow distribution in canine puppies. Pediatr Res 5(8):335–344PubMedGoogle Scholar
  29. 29.
    Robillard JE, Weitzman RE (1980) Developmental aspects of the fetal renal response to exogenous arginine vasopressin. Am J Physiol 238(5):F407–F414PubMedGoogle Scholar
  30. 30.
    Robillard JE, Segar JL, Smith FG, Jose PA (1992) Regulation of sodium metabolism and extracellular fluid volume during development. Clin Perinatol 19(1):15–31PubMedGoogle Scholar
  31. 31.
    Ingelfinger JR, Woods LL (2002) Perinatal programming, renal development, and adult renal function. Am J Hypertens 15(2 Pt 2):46S–49SPubMedGoogle Scholar
  32. 32.
    Broughton Pipkin F, Kirkpatrick SM, Lumbers ER, Mott JC (1974) Renin and angiotensin-like levels in foetal, new-born and adult sheep. J Physiol 241(3):575–588PubMedGoogle Scholar
  33. 33.
    Broughton Pipkin F, Lumbers ER, Mott JC (1974) Factors influencing plasma renin and angiotensin II in the conscious pregnant ewe and its foetus. J Physiol 243(3):619–636PubMedGoogle Scholar
  34. 34.
    Smith FG Jr, Lupu AN, Barajas L, Bauer R, Bashore RA (1974) The renin-angiotensin system in the fetal lamb. Pediatr Res 8(6):611–620PubMedGoogle Scholar
  35. 35.
    Stevens AD, Lumbers ER (1986) Effect on maternal and fetal renal function and plasma renin activity of a high salt intake by the ewe. J Dev Physiol 8(4):267–275PubMedGoogle Scholar
  36. 36.
    Robillard JE, Gomez RA, VanOrden D, Smith FG Jr (1982) Comparison of the adrenal and renal responses to angiotensin II fetal lambs and adult sheep. Circ Res 50(1):140–147PubMedGoogle Scholar
  37. 37.
    Stevenson KM, Gibson KJ, Lumbers ER (1996) Effects of losartan on the cardiovascular system, renal haemodynamics and function and lung liquid flow in fetal sheep. Clin Exp Pharmacol Physiol 23(2):125–133PubMedGoogle Scholar
  38. 38.
    Daikha-Dahmane F, Levy-Beff E, Jugie M, Lenclen R (2006) Foetal kidney maldevelopment in maternal use of angiotensin II type I receptor antagonists. Pediatr Nephrol 21(5):729–732PubMedGoogle Scholar
  39. 39.
    Woods LL, Ingelfinger JR, Nyengaard JR, Rasch R (2001) Maternal protein restriction suppresses the newborn renin-angiotensin system and programs adult hypertension in rats. Pediatr Res 49(4):460–467PubMedGoogle Scholar
  40. 40.
    Pryde PG, Sedman AB, Nugent CE, Barr M Jr (1993) Angiotensin-converting enzyme inhibitor fetopathy. J Am Soc Nephrol 3(9):1575–1582PubMedGoogle Scholar
  41. 41.
    Rosa FW, Bosco LA, Graham CF, Milstien JB, Dreis M, Creamer J (1989) Neonatal anuria with maternal angiotensin-converting enzyme inhibition. Obstet Gynecol 74(3 Pt 1):371–374PubMedGoogle Scholar
  42. 42.
    Iwamoto HS, Rudolph AM (1981) Role of renin-angiotensin system in response to hemorrhage in fetal sheep. Am J Physiol 240(6):H848–H854PubMedGoogle Scholar
  43. 43.
    Gomez RA, Meernik JG, Kuehl WD, Robillard JE (1984) Developmental aspects of the renal response to hemorrhage during fetal life. Pediatr Res 18(1):40–46PubMedGoogle Scholar
  44. 44.
    Robillard JE, Weitzman RE, Fisher DA, Smith FG Jr (1979) The dynamics of vasopressin release and blood volume regulation during fetal hemorrhage in the lamb fetus. Pediatr Res 13(5 Pt 1):606–610PubMedGoogle Scholar
  45. 45.
    Brace RA, Cheung CY (1986) Fetal cardiovascular and endocrine responses to prolonged fetal hemorrhage. Am J Physiol 251(2 Pt 2):R417–R424PubMedGoogle Scholar
  46. 46.
    Robillard JE, Nakamura KT, Varille VA, Andresen AA, Matherne GP, VanOrden DE (1988) Ontogeny of the renal response to natriuretic peptide in sheep. Am J Physiol 254(5 Pt 2):F634–F641PubMedGoogle Scholar
  47. 47.
    Robillard JE, Nakamura KT, DiBona GF (1986) Effects of renal denervation on renal responses to hypoxemia in fetal lambs. Am J Physiol 250(2 Pt 2):F294–F301PubMedGoogle Scholar
  48. 48.
    Robillard JE, Nakamura KT, Wilkin MK, McWeeny OJ, DiBona GF (1987) Ontogeny of renal hemodynamic response to renal nerve stimulation in sheep. Am J Physiol 252(4 Pt 2):F605–F612PubMedGoogle Scholar
  49. 49.
    Guillery EN, Karniski LP, Mathews MS, Robillard JE (1994) Maturation of proximal tubule Na+/H+ antiporter activity in sheep during transition from fetus to newborn. Am J Physiol 267(4 Pt 2):F537–F545PubMedGoogle Scholar
  50. 50.
    Matherne GP, Nakamura KT, Robillard JE (1988) Ontogeny of alpha-adrenoceptor responses in renal vascular bed of sheep. Am J Physiol 254(2 Pt 2):R277–R283PubMedGoogle Scholar
  51. 51.
    Buckley NM, Brazeau P, Gootman PM, Frasier ID (1979) Renal circulatory effects of adrenergic stimuli in anesthetized piglets and mature swine. Am J Physiol 237(6):H690–H695PubMedGoogle Scholar
  52. 52.
    Pace-Asciak CR (1977) Prostaglandin biosynthesis and catabolism in the developing fetal sheep kidney. Prostaglandins 13(4):661–668PubMedGoogle Scholar
  53. 53.
    Terragno NA, Terragno A, Early JA, Roberts MA, McGiff JC (1978) Endogenous prostaglandin synthesis inhibitor in the renal cortex. Effects on production of prostacyclin by renal blood vessels. Clin Sci Mol Med Suppl 4:199s–202sPubMedGoogle Scholar
  54. 54.
    Matson JR, Stokes JB, Robillard JE (1981) Effects of inhibition of prostaglandin synthesis on fetal renal function. Kidney Int 20(5):621–627PubMedGoogle Scholar
  55. 55.
    Kirshon B, Mari G, Moise KJ Jr (1990) Indomethacin therapy in the treatment of symptomatic polyhydramnios. Obstet Gynecol 75(2):202–205PubMedGoogle Scholar
  56. 56.
    Hendricks SK, Smith JR, Moore DE, Brown ZA (1990) Oligohydramnios associated with prostaglandin synthetase inhibitors in preterm labour. Br J Obstet Gynaecol 97(4):312–316PubMedGoogle Scholar
  57. 57.
    Seyberth HW, Rascher W, Hackenthal R, Wille L (1983) Effect of prolonged indomethacin therapy on renal function and selected vasoactive hormones in very-low-birth-weight infants with symptomatic patent ductus arteriosus. J Pediatr 103(6):979–984PubMedGoogle Scholar
  58. 58.
    el-Dahr SS, Yosipiv I (1993) Developmentally regulated kallikrein enzymatic activity and gene transcription rate in maturing rat kidneys. Am J Physiol 265(1 Pt 2):F146–F150PubMedGoogle Scholar
  59. 59.
    Robillard JE, Lawton WJ, Weismann DN, Sessions C (1982) Developmental aspects of the renal kallikrein-like activity in fetal and newborn lambs. Kidney Int 22(6):594–601PubMedGoogle Scholar
  60. 60.
    Vio CP, Olavarria F, Krause S, Herrmann F, Grob K (1987) Kallikrein excretion: relationship with maturation and renal function in human neonates at different gestational ages. Biol Neonat 52(3):121–126Google Scholar
  61. 61.
    Bogaert GA, Kogan BA, Mevorach RA (1993) Effects of endothelium-derived nitric oxide on renal hemodynamics and function in the sheep fetus. Pediatr Res 34(6):755–761PubMedGoogle Scholar
  62. 62.
    Solhaug MJ, Wallace MR, Granger JP (1993) Endothelium-derived nitric oxide modulates renal hemodynamics in the developing piglet. Pediatr Res 34(6):750–754PubMedGoogle Scholar
  63. 63.
    Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288(5789):373–376PubMedGoogle Scholar
  64. 64.
    Bastron RD, Kaloyanides GJ (1972) Effect of sodium nitroprusside on function in the isolated and intact dog kidney. J Pharmacol Exp Ther 181(2):244–249PubMedGoogle Scholar
  65. 65.
    Persson PB (2002) Nitric oxide in the kidney. Am J Physiol Regul Integr Comp Physiol 283(5):R1005–R1007PubMedGoogle Scholar
  66. 66.
    Cheung CY (1991) Role of endogenous atrial natriuretic factor in the regulation of fetal cardiovascular and renal function. Am J Obstet Gynecol 165(5 Pt 1):1558–1567PubMedGoogle Scholar
  67. 67.
    Dodd A, Kullama LK, Ervin MG, Leake RD, Ross MG (1994) Ontogeny of ovine fetal renal atrial natriuretic factor receptors. Life Sci 54(15):1101–1107PubMedGoogle Scholar
  68. 68.
    Cheung CY, Roberts VJ (1993) Developmental changes in atrial natriuretic factor content and localization of its messenger ribonucleic acid in ovine fetal heart. Am J Obstet Gynecol 169(5):1345–1351PubMedGoogle Scholar
  69. 69.
    Kikuchi K, Nakao K, Hayashi K et al (1987) Ontogeny of atrial natriuretic polypeptide in the human heart. Acta Endocrinol 115(2):211–217PubMedGoogle Scholar
  70. 70.
    Walsh P (2002) Hormonal control of renal function during development. In: Walsh P (ed) Campbell’s textbook of urology. Elsevier Science, Philadelphia, pp 1772–1774Google Scholar
  71. 71.
    Smith FG, Lumbers ER (1989) Comparison of renal function in term fetal sheep and newborn lambs. Biol Neonat 55(4–5):309–316Google Scholar
  72. 72.
    Cheung CY, Gibbs DM, Brace RA (1987) Atrial natriuretic factor in maternal and fetal sheep. Am J Physiol 252(2 Pt 1):E279–E282PubMedGoogle Scholar
  73. 73.
    Ervin MG, Ross MG, Castro R et al (1988) Ovine fetal and adult atrial natriuretic factor metabolism. Am J Physiol 254(1 Pt 2):R40–R46PubMedGoogle Scholar
  74. 74.
    Tulassay T, Rascher W, Seyberth HW, Lang RE, Toth M, Sulyok E (1986) Role of atrial natriuretic peptide in sodium homeostasis in premature infants. J Pediatr 109(6):1023–1027PubMedGoogle Scholar
  75. 75.
    Brace RA, Cheung CY (1987) Cardiovascular and fluid responses to atrial natriuretic factor in sheep fetus. Am J Physiol 253(4 Pt 2):R561–R567PubMedGoogle Scholar
  76. 76.
    Varille VA, Nakamura KT, McWeeny OJ, Matherne GP, Smith FG, Robillard JE (1989) Renal hemodynamic response to atrial natriuretic factor in fetal and newborn sheep. Pediatr Res 25(3):291–294PubMedGoogle Scholar
  77. 77.
    Shine P, McDougall JG, Towstoless MK, Wintour EM (1987) Action of atrial natriuretic peptide in the immature ovine kidney. Pediatr Res 22(1):11–15PubMedGoogle Scholar
  78. 78.
    Fujino Y, Ross MG, Ervin MG, Castro R, Leake RD, Fisher DA (1992) Ovine maternal and fetal glomerular atrial natriuretic factor receptors: response to dehydration. Biol Neonat 62(2–3):120–126Google Scholar
  79. 79.
    Davenport AP, Battistini B (2002) Classification of endothelin receptors and antagonists in clinical development. Clin Sci (Lond) 103(Suppl 48):1S–3SGoogle Scholar
  80. 80.
    Cheung CY (1994) Regulation of atrial natriuretic factor release by endothelin in ovine fetuses. Am J Physiol 267(2 Pt 2):R380–R386PubMedGoogle Scholar
  81. 81.
    Usuki S, Saitoh T, Sawamura T et al (1990) Increased maternal plasma concentration of endothelin-1 during labor pain or on delivery and the existence of a large amount of endothelin-1 in amniotic fluid. Gynecol Endocrinol 4(2):85–97PubMedGoogle Scholar
  82. 82.
    Nisell H, Hemsen A, Lunell NO, Wolff K, Lundberg MJ (1990) Maternal and fetal levels of a novel polypeptide, endothelin: evidence for release during pregnancy and delivery. Gynecol Obstet Invest 30(3):129–132PubMedGoogle Scholar
  83. 83.
    Nakamura T, Kasai K, Konuma S et al (1990) Immunoreactive endothelin concentrations in maternal and fetal blood. Life Sci 46(15):1045–1050PubMedGoogle Scholar
  84. 84.
    Haegerstrand A, Hemsen A, Gillis C, Larsson O, Lundberg JM (1989) Endothelin: presence in human umbilical vessels, high levels in fetal blood and potent constrictor effect. Acta Physiol Scand 137(4):541–542PubMedGoogle Scholar
  85. 85.
    Han SP, Trapani AJ, Fok KF, Westfall TC, Knuepfer MM (1989) Effects of endothelin on regional hemodynamics in conscious rats. Eur J Pharmacol 159(3):303–305PubMedGoogle Scholar
  86. 86.
    Toth-Heyn P, Drukker A, Guignard JP (2000) The stressed neonatal kidney: from pathophysiology to clinical management of neonatal vasomotor nephropathy. Pediatr Nephrol 14(3):227–239PubMedGoogle Scholar
  87. 87.
    Nakamura KT, Matherne GP, McWeeny OJ, Smith BA, Robillard JE (1987) Renal hemodynamics and functional changes during the transition from fetal to newborn life in sheep. Pediatr Res 21(3):229–234PubMedGoogle Scholar
  88. 88.
    Smith FG, Lumbers ER (1988) Changes in renal function following delivery of the lamb by caesarean section. J Dev Physiol 10(2):145–148PubMedGoogle Scholar
  89. 89.
    Rankin JH, Gresham EL, Battaglia FC, Makowski EL, Meschia G (1972) Measurement of fetal renal inulin clearance in a chronic sheep preparation. J Appl Physiol 32(1):129–133PubMedGoogle Scholar
  90. 90.
    Robillard JE, Sessions C, Kennedey RL, Hamel-Robillard L, Smith FG Jr (1977) Interrelationship between glomerular filtration rate and renal transport of sodium and chloride during fetal life. Am J Obstet Gynecol 128(7):727–734PubMedGoogle Scholar
  91. 91.
    Robillard JE, Kulvinskas C, Sessions C, Burmeister L, Smith FG Jr (1975) Maturational changes in the fetal glomerular filtration rate. Am J Obstet Gynecol 122(5):601–606PubMedGoogle Scholar
  92. 92.
    Kesby GJ, Lumbers ER (1986) Factors affecting renal handling of sodium, hydrogen ions, and bicarbonate by the fetus. Am J Physiol 251(2 Pt 2):F226–F231PubMedGoogle Scholar
  93. 93.
    Leake RD, Trygstad CW, Oh W (1976) Inulin clearance in the newborn infant: relationship to gestational and postnatal age. Pediatr Res 10(8):759–762PubMedGoogle Scholar
  94. 94.
    Guignard JP, Torrado A, Da Cunha O, Gautier E (1975) Glomerular filtration rate in the first three weeks of life. J Pediatr 87(2):268–272PubMedGoogle Scholar
  95. 95.
    Nicolini U, Spelzini F (2001) Invasive assessment of fetal renal abnormalities: urinalysis, fetal blood sampling and biopsy. Prenat Diagn 21(11):964–969PubMedGoogle Scholar
  96. 96.
    Bayard F, Ances IG, Tapper AJ, Weldon VV, Kowarski A, Migeon CJ (1970) Transplacental passage and fetal secretion of aldosterone. J Clin Invest 49(7):1389–1393PubMedCentralPubMedGoogle Scholar
  97. 97.
    Siegel SR, Leake RD, Weitzman RE, Fisher DA (1980) Effects of furosemide and acute salt loading on vasopressin and renin secretion in the fetal lamb. Pediatr Res 14(7):869–871PubMedGoogle Scholar
  98. 98.
    Giry J, Delost P (1979) Placental transfer of aldosterone in the guinea-pig during late pregnancy. J Steroid Biochem 10(5):541–547PubMedGoogle Scholar
  99. 99.
    Wintour EM, Coghlan JP, Hardy KJ, Lingwood BE, Rayner M, Scoggins BA (1980) Placental transfer of aldosterone in the sheep. J Endocrinol 86(2):305–310PubMedGoogle Scholar
  100. 100.
    Robillard JE, Ramberg E, Sessions C et al (1980) Role of aldosterone on renal sodium and potassium excretion during fetal life and newborn period. Dev Pharmacol Ther 1(4):201–216PubMedGoogle Scholar
  101. 101.
    Robillard JE, Nakamura KT, Lawton WJ (1985) Effects of aldosterone on urinary kallikrein and sodium excretion during fetal life. Pediatr Res 19(10):1048–1052PubMedGoogle Scholar
  102. 102.
    Lingwood B, Hardy KJ, Coghlan JP, Wintour EM (1978) Effect of aldosterone on urine composition in the chronically cannulated ovine foetus. J Endocrinol 76(3):553–554PubMedGoogle Scholar
  103. 103.
    Ganong WF, Mulrow PJ (1958) Rate of change in sodium and potassium excretion after injection of aldosterone into the aorta and renal artery of the dog. Am J Physiol 195(2):337–342PubMedGoogle Scholar
  104. 104.
    Horisberger JD, Diezi J (1983) Effects of mineralocorticoids on Na+ and K+ excretion in the adrenalectomized rat. Am J Physiol 245(1):F89–F99PubMedGoogle Scholar
  105. 105.
    Stevens AD, Lumbers ER (1981) The relationship between plasma renin activity and renal electrolyte excretion in the fetal sheep. J Dev Physiol 3(2):101–110PubMedGoogle Scholar
  106. 106.
    Lumbers ER, Stevens AD (1987) The effects of frusemide, saralasin and hypotension on fetal plasma renin activity and on fetal renal function. J Physiol 393:479–490PubMedCentralPubMedGoogle Scholar
  107. 107.
    Walker DW, Mitchell MD (1978) Prostaglandins in urine of foetal lambs. Nature 271(5641):161–162PubMedGoogle Scholar
  108. 108.
    Brace RA, Bayer LA, Cheung CY (1989) Fetal cardiovascular, endocrine, and fluid responses to atrial natriuretic factor infusion. Am J Physiol 257(3 Pt 2):R580–R587PubMedGoogle Scholar
  109. 109.
    Castro R, Ervin MG, Leake RD, Ross MG, Sherman DJ, Fisher DA (1991) Fetal renal response to atrial natriuretic factor decreases with maturation. Am J Physiol 260(2 Pt 2):R346–R352PubMedGoogle Scholar
  110. 110.
    Kleinman LI (1982) Developmental renal physiology. Physiologist 25(2):104–110PubMedGoogle Scholar
  111. 111.
    Lumbers ER (1984) A brief review of fetal renal function. J Dev Physiol 6(1):1–10PubMedGoogle Scholar
  112. 112.
    Siegel SR, Oh W (1976) Renal function as a marker of human fetal maturation. Acta Paediatr Scand 65(4):481–485PubMedGoogle Scholar
  113. 113.
    Aperia A, Broberger O, Herin P, Zetterstrom R (1979) Sodium excretion in relation to sodium intake and aldosterone excretion in newborn pre-term and full-term infants. Acta Paediatr Scand 68(6):813–817PubMedGoogle Scholar
  114. 114.
    Spitzer A (1982) The role of the kidney in sodium homeostasis during maturation. Kidney Int 21(4):539–545PubMedGoogle Scholar
  115. 115.
    Lumbers ER, Hill KJ, Bennett VJ (1988) Proximal and distal tubular activity in chronically catheterized fetal sheep compared with the adult. Can J Physiol Pharmacol 66(6):697–702PubMedGoogle Scholar
  116. 116.
    Bianchini L, Pouyssegur J (1995) Na+/H+ exchangers: structure, function and regulation. In: Schlondorff D, Bonventre J (eds) Molecular biology of the kidney in health and disease. Marcel Dekker, New YorkGoogle Scholar
  117. 117.
    Orlowski J, Lingrel JB (1988) Tissue-specific and developmental regulation of rat Na, K-ATPase catalytic alpha isoform and beta subunit mRNAs. J Biol Chem 263(21):10436–10442PubMedGoogle Scholar
  118. 118.
    Tse CM, Levine SA, Yun CH et al (1993) Cloning and expression of a rabbit cDNA encoding a serum-activated ethylisopropylamiloride-resistant epithelial Na+/H+ exchanger isoform (NHE-2). J Biol Chem 268(16):11917–11924PubMedGoogle Scholar
  119. 119.
    Tse CM, Brant SR, Walker MS, Pouyssegur J, Donowitz M (1992) Cloning and sequencing of a rabbit cDNA encoding an intestinal and kidney-specific Na+/H+ exchanger isoform (NHE-3). J Biol Chem 267(13):9340–9346PubMedGoogle Scholar
  120. 120.
    Sardet C, Franchi A, Pouyssegur J (1989) Molecular cloning, primary structure, and expression of the human growth factor-activatable Na+/H+ antiporter. Cell 56(2):271–280PubMedGoogle Scholar
  121. 121.
    Bookstein C, Musch MW, DePaoli A et al (1994) A unique sodium-hydrogen exchange isoform (NHE-4) of the inner medulla of the rat kidney is induced by hyperosmolarity. J Biol Chem 269(47):29704–29709PubMedGoogle Scholar
  122. 122.
    Larsson SH, Aperia A (1991) Renal growth in infancy and childhood–experimental studies of regulatory mechanisms. Pediatr Nephrol 5(4):439–442PubMedGoogle Scholar
  123. 123.
    Merlet-Benichou C, Pegorier M, Muffat-Joly M, Augeron C (1981) Functional and morphologic patterns of renal maturation in the developing guinea pig. Am J Physiol 241(6):F618–F624PubMedGoogle Scholar
  124. 124.
    Robillard JE, Sessions C, Kennedy RL, Smith FG Jr (1978) Maturation of the glucose transport process by the fetal kidney. Pediatr Res 12(5):680–684PubMedGoogle Scholar
  125. 125.
    Arant BS Jr, Edelmann CM Jr, Nash MA (1974) The renal reabsorption of glucose in the developing canine kidney: a study of glomerulotubular balance. Pediatr Res 8(6):638–646PubMedGoogle Scholar
  126. 126.
    Beck JC, Lipkowitz MS, Abramson RG (1988) Characterization of the fetal glucose transporter in rabbit kidney. Comparison with the adult brush border electrogenic Na+-glucose symporter. J Clin Invest 82(2):379–387PubMedCentralPubMedGoogle Scholar
  127. 127.
    Alexander DP, Nixon DA (1962) Plasma clearance of p-aminohippuric acid by the kidneys of foetal, neonatal and adult sheep. Nature 194:483–484PubMedGoogle Scholar
  128. 128.
    Buddingh F, Parker HR, Ishizaki G, Tyler WS (1971) Long-term studies of the functional development of the fetal kidney in sheep. Am J Vet Res 32(12):1993–1998PubMedGoogle Scholar
  129. 129.
    Robillard JE, Sessions C, Burmeister L, Smith FG Jr (1977) Influence of fetal extracellular volume contraction on renal reabsorption of bicarbonate in fetal lambs. Pediatr Res 11(5):649–655PubMedGoogle Scholar
  130. 130.
    Robillard JE, Sessions C, Smith FG Jr (1978) In vivo demonstration of renal carbonic anhydrase activity in the fetal lamb. Biol Neonat 34(5–6):253–258Google Scholar
  131. 131.
    Hill KJ, Lumbers ER (1988) Renal function in adult and fetal sheep. J Dev Physiol 10(2):149–159PubMedGoogle Scholar
  132. 132.
    Lonnerholm G, Wistrand PJ (1983) Carbonic anhydrase in the human fetal kidney. Pediatr Res 17(5):390–397PubMedGoogle Scholar
  133. 133.
    Smith FG Jr, Schwartz A (1970) Response of the intact lamb fetus to acidosis. Am J Obstet Gynecol 106(1):52–58PubMedGoogle Scholar
  134. 134.
    Kesby GJ, Lumbers ER (1988) The effects of metabolic acidosis on renal function of fetal sheep. J Physiol 396:65–74PubMedCentralPubMedGoogle Scholar
  135. 135.
    Smith FG, Lumbers ER (1988) Effects of maternal hyperglycemia on fetal renal function in sheep. Am J Physiol 255(1 Pt 2):F11–F14PubMedGoogle Scholar
  136. 136.
    Economou-Mavrou C, Mc CR (1958) Calcium, magnesium and phosphorus in foetal tissues. Biochem J 68(4):573–580PubMedCentralPubMedGoogle Scholar
  137. 137.
    Smith FG Jr, Alexander DP, Buckle RM, Britton HG, Nixon DA (1972) Parathyroid hormone in foetal and adult sheep: the effect of hypocalcaemia. J Endocrinol 53(3):339–348PubMedGoogle Scholar
  138. 138.
    Davicco MJ, Coxam V, Lefaivre J, Barlet JP (1992) Parathyroid hormone-related peptide increases urinary phosphate excretion in fetal lambs. Exp Physiol 77(2):377–383PubMedGoogle Scholar
  139. 139.
    Robillard JE, Nakamura KT (1988) Neurohormonal regulation of renal function during development. Am J Physiol 254(6 Pt 2):F771–F779PubMedGoogle Scholar
  140. 140.
    Brace RA, Moore TR (1991) Diurnal rhythms in fetal urine flow, vascular pressures, and heart rate in sheep. Am J Physiol 261(4 Pt 2):R1015–R1021PubMedGoogle Scholar
  141. 141.
    Rabinowitz R, Peters MT, Vyas S, Campbell S, Nicolaides KH (1989) Measurement of fetal urine production in normal pregnancy by real-time ultrasonography. Am J Obstet Gynecol 161(5):1264–1266PubMedGoogle Scholar
  142. 142.
    Lumbers ER, Stevens AD (1983) Changes in fetal renal function in response to infusions of a hyperosmotic solution of mannitol to the ewe. J Physiol 343:439–446PubMedCentralPubMedGoogle Scholar
  143. 143.
    Bell RJ, Congiu M, Hardy KJ, Wintour EM (1984) Gestation-dependent aspects of the response of the ovine fetus to the osmotic stress induced by maternal water deprivation. Q J Exp Physiol 69(1):187–195PubMedGoogle Scholar
  144. 144.
    Ross MG, Sherman DJ, Ervin MG, Castro R, Humme J (1988) Maternal dehydration-rehydration: fetal plasma and urinary responses. Am J Physiol 255(5 Pt 1):E674–E679PubMedGoogle Scholar
  145. 145.
    Stevens AD, Lumbers ER (1985) The effect of maternal fluid intake on the volume and composition of fetal urine. J Dev Physiol 7(3):161–166PubMedGoogle Scholar
  146. 146.
    Woods LL, Cheung CY, Power GG, Brace RA (1986) Role of arginine vasopressin in fetal renal response to hypertonicity. Am J Physiol 251(1 Pt 2):F156–F163PubMedGoogle Scholar
  147. 147.
    Lingwood B, Hardy KJ, Horacek I, McPhee ML, Scoggins BA, Wintour EM (1978) The effects of antidiuretic hormone on urine flow and composition in the chronically-cannulated ovine fetus. Q J Exp Physiol Cogn Med Sci 63(4):315–330PubMedGoogle Scholar
  148. 148.
    Lumbers ER, Smith FG, Stevens AD (1985) Measurement of net transplacental transfer of fluid to the fetal sheep. J Physiol 364:289–299PubMedCentralPubMedGoogle Scholar
  149. 149.
    Wintour EM, Bell RJ, Congui M, MacIsaac RJ, Wang X (1985) The value of urine osmolality as an index of stress in the ovine fetus. J Dev Physiol 7(5):347–354PubMedGoogle Scholar
  150. 150.
    Rees L, Brook CG, Forsling ML (1983) Continuous urine collection in the study of vasopressin in the newborn. Horm Res 17(3):134–140PubMedGoogle Scholar
  151. 151.
    Levina SE (1968) Endocrine features in development of human hypothalamus, hypophysis, and placenta. Gen Comp Endocrinol 11(1):151–159PubMedGoogle Scholar
  152. 152.
    Leake RD, Weitzman RE, Effros RM, Siegel SR, Fisher DA (1979) Maternal fetal osmolar homeostasis: fetal posterior pituitary autonomy. Pediatr Res 13(7):841–844PubMedGoogle Scholar
  153. 153.
    Weitzman RE, Fisher DA, Robillard J, Erenberg A, Kennedy R, Smith F (1978) Arginine vasopressin response to an osmotic stimulus in the fetal sheep. Pediatr Res 12(1):35–38PubMedGoogle Scholar
  154. 154.
    Rurak DW (1979) Plasma vasopressin levels during haemorrhage in mature and immature fetal sheep. J Dev Physiol 1(1):91–101PubMedGoogle Scholar
  155. 155.
    Ervin MG, Terry KA, Calvario GC et al (1994) Vascular effects alter early-gestation fetal renal responses to vasopressin. Am J Physiol 266(3 Pt 2):R722–R729PubMedGoogle Scholar
  156. 156.
    Fushimi K, Uchida S, Hara Y, Hirata Y, Marumo F, Sasaki S (1993) Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature 361(6412):549–552PubMedGoogle Scholar
  157. 157.
    Sasaki S, Fushimi K, Saito H et al (1994) Cloning, characterization, and chromosomal mapping of human aquaporin of collecting duct. J Clin Invest 93(3):1250–1256PubMedCentralPubMedGoogle Scholar
  158. 158.
    Hayashi M, Sasaki S, Tsuganezawa H et al (1994) Expression and distribution of aquaporin of collecting duct are regulated by vasopressin V2 receptor in rat kidney. J Clin Invest 94(5):1778–1783PubMedCentralPubMedGoogle Scholar
  159. 159.
    Baum M, Quigley R (1993) Glucocorticoids stimulate rabbit proximal convoluted tubule acidification. J Clin Invest 91(1):110–114PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Lyndsay A. Harshman
    • 1
  • Patrick D. Brophy
    • 1
  1. 1.Division of NephrologyUniversity of Iowa Children’s Hospital, University of Iowa Carve College of MedicineIowa City, IowaUSA

Personalised recommendations