Skip to main content

cupSODA: A CUDA-Powered Simulator of Mass-Action Kinetics

  • Conference paper
Parallel Computing Technologies (PaCT 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7979))

Included in the following conference series:

Abstract

The computational investigation of a biological system often requires the execution of a large number of simulations to analyze its dynamics, and to derive useful knowledge on its behavior under physiological and perturbed conditions. This analysis usually turns out into very high computational costs when simulations are run on central processing units (CPUs), therefore demanding a shift to the use of high-performance processors. In this work we present a simulator of biological systems, called cupSODA, which exploits the higher memory bandwidth and computational capability of graphics processing units (GPUs). This software allows to execute parallel simulations of the dynamics of biological systems, by first deriving a set of ordinary differential equations from reaction-based mechanistic models defined according to the mass-action kinetics, and then exploiting the numerical integration algorithm LSODA. We show that cupSODA can achieve a 112 × speedup on GPUs with respect to equivalent executions of LSODA on CPUs.

This work is partially supported by Regione Lombardia, project “Network Enabled Drug Design (NEDD)”, and by the Research Infrastructure “SYSBIO Centre of Systems Biology”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aldridge, B., Burke, J., Lauffenburger, D., Sorger, P.: Physicochemical modelling of cell signalling pathways. Nature Cell Biology 8, 1195–1203 (2006)

    Article  Google Scholar 

  2. Chou, I., Voit, E.: Recent developments in parameter estimation and structure identification of biochemical and genomic systems. Mathematical Biosciences 219(2), 57–83 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Besozzi, D., Cazzaniga, P., Pescini, D., Mauri, G., Colombo, S., Martegani, E.: The role of feedback control mechanisms on the establishment of oscillatory regimes in the Ras/cAMP/PKA pathway in S. cerevisiae. EURASIP Journal on Bioinformatics and Systems Biology 2012(10) (2012)

    Google Scholar 

  4. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., Tarantola, S.: Global Sensitivity Analysis: The Primer. Wiley-Interscience (2008)

    Google Scholar 

  5. Raue, A., Kreutz, C., Maiwald, T., Bachmann, J., Schilling, M., Klingmüller, U., Timmer, J.: Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics 25(15), 1923–1929 (2009)

    Article  Google Scholar 

  6. Dräger, A., Kronfeld, M., Ziller, M.J., Supper, J., Planatscher, H., Magnus, J.B., Oldiges, M., Kohlbacher, O., Zell, A.: Modeling metabolic networks in C. glutamicum: a comparison of rate laws in combination with various parameter optimization strategies. BMC Systems Biology 3(5) (2009)

    Google Scholar 

  7. Besozzi, D., Cazzaniga, P., Mauri, G., Pescini, D., Vanneschi, L.: A comparison of genetic algorithms and particle swarm optimization for parameter estimation in stochastic biochemical systems. In: Pizzuti, C., Ritchie, M.D., Giacobini, M. (eds.) EvoBIO 2009. LNCS, vol. 5483, pp. 116–127. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Nobile, M.S., Besozzi, D., Cazzaniga, P., Mauri, G., Pescini, D.: A GPU-based multi-swarm PSO method for parameter estimation in stochastic biological systems exploiting discrete-time target series. In: Giacobini, M., Vanneschi, L., Bush, W.S. (eds.) EvoBIO 2012. LNCS, vol. 7246, pp. 74–85. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Nobile, M.S., Cazzaniga, P., Besozzi, D., Pescini, D., Mauri, G.: Reverse engineering of kinetic reaction networks by means of cartesian genetic programming and particle swarm optimization. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC 2013) (In press, 2013)

    Google Scholar 

  10. Kentzoglanakis, K., Poole, M.: A swarm intelligence framework for reconstructing gene networks: Searching for biologically plausible architectures. IEEE/ACM Transactions on Computational Biology and Bioinformatics 9(2), 358–371 (2012)

    Article  Google Scholar 

  11. Koza, J.R., Mydlowec, W., Lanza, G., Yu, J., Keane, M.A.: Automatic computational discovery of chemical reaction networks using genetic programming. In: Džeroski, S., Todorovski, L. (eds.) Computational Discovery 2007. LNCS (LNAI), vol. 4660, pp. 205–227. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Ando, S., Sakamoto, E., Iba, H.: Evolutionary modeling and inference of gene network. Information Sciences 145(3-4), 237–259 (2002)

    Article  MathSciNet  Google Scholar 

  13. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. John Wiley & Sons (2003)

    Google Scholar 

  14. Gillespie, D.T.: Stochastic simulation of chemical kinetics. Annual Review of Physical Chemistry 58, 35–55 (2007)

    Article  Google Scholar 

  15. Petzold, L.: Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations. SIAM Journal of Scientific and Statistical Computing 4(1), 136–148 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. Demattè, L., Prandi, D.: GPU computing for systems biology. Briefings in Bioinformatics 11(3), 323–333 (2010)

    Article  Google Scholar 

  17. Payne, J., Sinnott-Armstrong, N., Moore, J.: Exploiting graphics processing units for computational biology and bioinformatics. Interdisciplinary Sciences, Computational Life Sciences 2(3), 213–220 (2010)

    Article  Google Scholar 

  18. Harvey, M.J., De Fabritiis, G.: A survey of computational molecular science using graphics processing units. Wiley Interdisciplinary Reviews: Computational Molecular Science 2(5), 734–742 (2012)

    Article  Google Scholar 

  19. Zhou, Y., Liepe, J., Sheng, X., Stumpf, M.P.H., Barnes, C.: GPU accelerated biochemical network simulation. Bioinformatics 27(6), 874–876 (2011)

    Article  Google Scholar 

  20. Vigelius, M., Lane, A., Meyer, B.: Accelerating reaction-diffusion simulations with general-purpose graphics processing units. Bioinformatics 27(2), 288–290 (2011)

    Article  Google Scholar 

  21. Farber, R.: Topical perspective on massive threading and parallelism. Journal of Molecular Graphics and Modelling 30, 82–89 (2011)

    Article  Google Scholar 

  22. Nvidia: CUDA C Programming Guide v5.0 (2012)

    Google Scholar 

  23. Wolkenhauer, O., Ullah, M., Kolch, W., Kwang-Hyun, C.: Modeling and simulation of intracellular dynamics: choosing an appropriate framework. IEEE Transactions on Nanobiosciences 3(3), 200–207 (2004)

    Article  Google Scholar 

  24. Nvidia: CUDA C Best Practices Guide (2012)

    Google Scholar 

  25. Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L., Mendes, P., Kummer, U.: COPASI - a COmplex PAthway SImulator. Bioinformatics 22(24), 3067–3074 (2006)

    Article  Google Scholar 

  26. Nelson, D., Cox, M.: Lehninger Principles of Biochemistry. W. H. Freeman Company (2004)

    Google Scholar 

  27. Wang, Y., Christley, S., Mjolsness, E., Xie, X.: Parameter inference for discretely observed stochastic kinetic models using stochastic gradient descent. BMC Systems Biology 4(1) (2010)

    Google Scholar 

  28. Cazzaniga, P., Pescini, D., Besozzi, D., Mauri, G., Colombo, S., Martegani, E.: Modeling and stochastic simulation of the Ras/cAMP/PKA pathway in the yeast Saccharomyces cerevisiae evidences a key regulatory function for intracellular guanine nucleotides pools. Journal of Biotechnology 133(3), 377–385 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nobile, M.S., Besozzi, D., Cazzaniga, P., Mauri, G., Pescini, D. (2013). cupSODA: A CUDA-Powered Simulator of Mass-Action Kinetics. In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 2013. Lecture Notes in Computer Science, vol 7979. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39958-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39958-9_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39957-2

  • Online ISBN: 978-3-642-39958-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics