Advertisement

State Transfer Hamiltonians in Photonic Lattices

  • Matthieu Bellec
  • Georgios M. Nikolopoulos
  • Stelios Tzortzakis
Chapter
Part of the Quantum Science and Technology book series (QST)

Abstract

Faithful communication is a necessary precondition for large scale all-optical networking and quantum information processing. Related theoretical investigations in different areas of physics have led to various proposals in which finite discrete lattices are used as channels for short-distance communication tasks. Here, in the framework of femtosecond-laser-written waveguide arrays, we present the first experimental realization of such a channel with judiciously engineered couplings. Various sources of imperfections and defects are identified, which are associated with the engineering procedure and affect the communication.

Keywords

Quantum Information Processing Waveguide Array Photonic Lattice Coupling Configuration Discrete Soliton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    D.N. Christodoulides, F. Lederer, Y. Silberberg, Nature 424, 817 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    A. Szameit, S. Nolte, J. Phys. B 43, 163001 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    S. Longhi, Laser Photonics Rev. 3, 243 (2009)CrossRefGoogle Scholar
  4. 4.
    H. Trompeter, W. Krolikowski, D. Neshev, A. Desyatnikov, A. Sukhorukov, Y. Kivshar, T. Pertsch, U. Peschel, F. Lederer, Phys. Rev. Lett. 96, 053903 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    T. Schwartz, G. Bartal, S. Fishman, M. Segev, Nature 446, 52 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D.N. Christodoulides, Y. Silberberg, Phys. Rev. Lett. 100, 13906 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    L. Martin, G. Di Giuseppe, A. Perez-Leija, R. Keil, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, A.F. Abouraddy, D.N. Christodoulides, B.E.A. Saleh, Opt. Express 19, 13636 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    A. Perez-Leija, H. Moya-Cessa, A. Szameit, D.N. Christodoulides, Opt. Express 35, 2409 (2010)Google Scholar
  9. 9.
    R. Keil, A. Perez-Leija, F. Dreisow, M. Heinrich, H. Moya-Cessa, S. Nolte, D. N. Christodoulides, A. Szameit, Phys. Rev. Lett. 107, 103601 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    F. Lederer, G.I. Stegeman, D.N. Christodoulides, G. Assanto, M. Segev, Y. Silberberg, Phys. Rep. 463, 1 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    M. Bellec, P. Panagiotopoulos, D.G. Papazoglou, N.K. Efremidis, A. Couairon, S. Tzortzakis, Phys. Rev. Lett. 109, 113905 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    U. Peschel, R. Morandotti, J.M. Arnold, J.S. Aitchison, H.S. Eisenberg, Y. Silberberg, T. Pertsch, F. Lederer, J. Opt. Soc. Am. B 19, 2637 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    U. Röpke, H. Bartelt, S. Unger, K. Schuster, J. Kobelke, Opt. Express 15, 6894 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    J.W. Fleischer, M. Segev, N.K. Efremidis, D.N. Christodoulides, Nature 422, 147 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    A. Szameit, J. Burghoff, T. Pertsch, S. Nolte, A. Tünnermann, F. Lederer, Opt. Express 14, 6055 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tünnermann, S. Nolte, D.N. Christodoulides, A. Szameit, Sci. Rep. 1, 94 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    A. Politi, M.J. Cryan, J.G. Rarity, S. Yu, J.L. O’Brien, Science 320, 646 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    G.D. Marshall, A. Politi, J.C.F. Matthews, P. Dekker, M. Ams, M.J. Withford, J.L. O’Brien, Opt. Express 17, 12546 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    S. Longhi, Phys. Rev. B 82, 041106(R) (2010)Google Scholar
  20. 20.
    S. Longhi, Opt. Lett. 33, 473 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    A. Szameit, F. Dreisow, M. Heinrich, T. Pertsch, S. Nolte, A. Tünnermann, E. Suran, F. Louradour, A. Barthélémy, S. Longhi, Appl. Phys. Lett. 93, 181109 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    R. Keil, Y. Lahini, Y. Shechtman, M. Heinrich, R. Pugatch, F. Dreisow, A. Tünnermann, S. Nolte, A. Szameit, Opt. Lett. 37, 809 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    Y. Joglekar, C. Thompson, G. Vemuri, Phys. Rev. A 83, 063017 (2011)ADSGoogle Scholar
  24. 24.
    R. Gordon, Opt. Lett. 29, 2752 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    S. Bose, Contemp. Phys. 48, 13 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    A. Kay, Int. J. Quantum Inf. 08, 641 (2010)CrossRefGoogle Scholar
  27. 27.
    J. Zhang, G. Lu Long, W. Zhang, Z. Deng, W. Liu, Z. Lu, Phys. Rev. A 72, 012331 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    J. Zhang, X. Peng, D. Suter, Phys. Rev. A 73, 062325 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    J. Zhang, N. Rajendran, X. Peng, D. Suter, Phys. Rev. A 76, 012317 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    J. Zhang, M. Ditty, D. Burgarth, C.A. Ryan, C.M. Chandrashekar, M. Laforest, O. Moussa, J. Baugh, R. Laflamme, Phys. Rev. A 80, 012316 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    M. Bellec, G.M. Nikolopoulos, S. Tzortzakis, Opt. Lett. 37, 4504 (2012)CrossRefGoogle Scholar
  32. 32.
    M. Christandl, N. Datta, A. Ekert, A. Landahl, Phys. Rev. Lett. 92, 187902 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    M. Christandl, N. Datta, T.C. Dorlas, A. Ekert, A. Kay, A.J. Landahl, Phys. Rev. A 71, 032312 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    G.M. Nikolopoulos, D. Petrosyan, P. Lambropoulos, Europhys. Lett. 65, 297 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    G.M. Nikolopoulos, D. Petrosyan, P. Lambropoulos, J. Phys.: Conds. Matter 16, 4991 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    A. Yariv, P. Yue, Photonics: Optical Electronics in Modern Communications (Oxford University Press, New York, 2006)Google Scholar
  37. 37.
    R.R. Gattass, E. Mazur, Nat. Photonics 2, 219 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Opt. Lett. 21, 1729 (1996)ADSCrossRefGoogle Scholar
  39. 39.
    J.H. Eberly, B.W. Shore, Z. Bialynicka-Birula, I. Bialynicki-Birula, Phys. Rev. A 16, 2038 (1977)ADSCrossRefGoogle Scholar
  40. 40.
    Z. Bialynicka-Birula, I. Bialynicki-Birula, J.H. Eberly, B.W. Shore, Phys. Rev. A 16, 2048 (1977)ADSCrossRefGoogle Scholar
  41. 41.
    R. Cook, B.W. Shore, Phys. Rev. A 20, 539 (1979)ADSCrossRefGoogle Scholar
  42. 42.
    T. Fukuda, S. Ishikawa, T. Fujii, K. Sakuma, H. Hosoya, Proc. SPIE 5339, 524 (2004)ADSCrossRefGoogle Scholar
  43. 43.
    V. Kostak, G. Nikolopoulos, I. Jex, Phys. Rev. A 75, 042319 (2007)ADSCrossRefGoogle Scholar
  44. 44.
    G.M. Nikolopoulos, A. Hoscovec, I. Jex, Phys. Rev. A 85, 062319 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    A. Perez-Leija, R. Keil, A. Kay, H. Moya-Cessa, S. Nolte, L.C. Kwek, B.M. Rodríguez-Lara, A. Szameit, D.N. Christodoulides, Phys. Rev. A 87, 012309 (2013)ADSCrossRefGoogle Scholar
  46. 46.
    L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, R. Osellame Phys. Rev. Lett. 105, 200503 (2010)ADSCrossRefGoogle Scholar
  47. 47.
    A.S. Solntsev, A.A. Sukhorukov, D.N. Neshev, Y.S. Kivshar, Phys. Rev. Lett. 108, 023601 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Matthieu Bellec
    • 1
    • 2
  • Georgios M. Nikolopoulos
    • 3
  • Stelios Tzortzakis
    • 3
    • 4
  1. 1.Institute of Electronic Structure and Laser, Foundation for Research and Technology – HellasHeraklionGreece
  2. 2.Laboratoire Physique de la Matière Condensée, CNRS UMR 7336Université Nice-Sophia AntipolisNiceFrance
  3. 3.Institute of Electronic Structure and Laser, Foundation for Research and Technology – HellasHeraklionGreece
  4. 4.Department of Materials Science and TechnologyUniversity of CreteHeraklionGreece

Personalised recommendations