Advertisement

Robustness of Spin-Chain State-Transfer Schemes

  • Joachim StolzeEmail author
  • Gonzalo A. Álvarez
  • Omar Osenda
  • Analia Zwick
Chapter
Part of the Quantum Science and Technology book series (QST)

Abstract

Spin chains are linear arrangements of qubits (spin-1/2 objects) with interactions between nearest or more distant neighbors. They have been considered for quantum information transfer between subunits of a quantum information processing device at short or intermediate distances. The most frequently studied task is the transfer of a single-qubit state. Several protocols have been developed to achieve this goal, broadly divisible into two classes, fully-engineered and boundary-controlled spin chains. We discuss state transfer induced by the natural dynamics of these two classes of systems, and the influence of deviations from the ideal system configuration, that is, manufacturing errors in the nearest-neighbor spin couplings. The fidelity of state transfer depends on the chain length and the disorder strength. We observe a power-law scaling of the fidelity deficit, i.e. the deviation from perfect transfer. Boundary-controlled chains can provide excellent fidelity under suitable circumstances and are potentially less difficult to manufacture and control than fully-engineered chains. We also review other existing theoretical work on the robustness of quantum state transfer as well as proposals for experimental implementation.

Keywords

Spin Chain State Transfer Disorder Strength Energy Eigenstates Quantum Spin Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

A. Z. and O. O. acknowledge support from SECYT-UNC and CONICET. A. Z. thanks for support by DAAD, G. A. A. for support by Alexander von Humboldt Foundation; both acknowledge the hospitality and support of Fakultät Physik of TU Dortmund.

References

  1. 1.
    E. Ising, Z. Phys. 31, 253 (1925)ADSGoogle Scholar
  2. 2.
    H.A. Bethe, Z. Phys. 71, 205 (1931)ADSGoogle Scholar
  3. 3.
    E. Balcar, S.W. Lovesey, Theory of Magnetic Neutron and Photon Scattering. Oxford Series on Neutron Scattering in Condensed Matter (Oxford University Press, Oxford, 1989)Google Scholar
  4. 4.
    J.G. Bednorz, K.A. Müller, Z. Phys. B Condens. Matter 64, 189 (1986)Google Scholar
  5. 5.
    J. Deisenhofer, M. Schmidt, Z. Wang, C. Kant, F. Mayr, F. Schrettle, H.A. Krug von Nidda, P. Ghigna, V. Tsurkan, A. Loidl, Ann. Phys. (Berl.) 523, 645 (2011)ADSGoogle Scholar
  6. 6.
    K. Uchinokura, J. Phys. Condens. Matter 14, R195 (2002)ADSGoogle Scholar
  7. 7.
    D.C. Mattis, The Theory of Magnetism I – Statics and Dynamics. Springer Series in Solid-State Sciences, vol. 17 (Springer, Berlin, 1981)Google Scholar
  8. 8.
    T.J. Osborne, N. Linden, Phys. Rev. A 69, 052315 (2004)ADSGoogle Scholar
  9. 9.
    A. Zwick, G.A. Álvarez, J. Stolze, O. Osenda, Phys. Rev. A 84, 022311 (2011)ADSGoogle Scholar
  10. 10.
    A. Zwick, G.A. Álvarez, J. Stolze, O. Osenda, Phys. Rev. A 85, 012318 (2012)ADSGoogle Scholar
  11. 11.
    A. Zwick, G.A. Álvarez, J. Stolze, O. Osenda, Optimal quantum state transfer in disordered spin chains. Preprint arXiv:1306.1695Google Scholar
  12. 12.
    J.D. Johnson, S. Krinsky, B.M. McCoy, Phys. Rev. A 8, 2526 (1973)ADSGoogle Scholar
  13. 13.
    E. Lieb, T. Schultz, D. Mattis, Ann. Phys. 16, 407 (1961)MathSciNetADSzbMATHGoogle Scholar
  14. 14.
    S. Katsura, Phys. Rev. 127, 1508 (1962)ADSzbMATHGoogle Scholar
  15. 15.
    P. Jordan, E. Wigner, Z. Phys. 47, 631 (1928)ADSzbMATHGoogle Scholar
  16. 16.
    S. Bose, Phys. Rev. Lett. 91, 207901 (2003)ADSGoogle Scholar
  17. 17.
    M. Horodecki, P. Horodecki, R. Horodecki, Phys. Rev. A 60, 1888 (1999)MathSciNetADSzbMATHGoogle Scholar
  18. 18.
    D. Burgarth, S. Bose, Phys. Rev. A 71, 052315 (2004)ADSGoogle Scholar
  19. 19.
    D. Burgarth, V. Giovannetti, S. Bose, J. Phys. A Math. Gen. 38, 6793 (2005)MathSciNetADSzbMATHGoogle Scholar
  20. 20.
    V. Subrahmanyam, Phys. Rev. A 69, 034304 (2004)ADSGoogle Scholar
  21. 21.
    M. Christandl, N. Datta, A. Ekert, A.J. Landahl, Phys. Rev. Lett. 92, 187902 (2004)ADSGoogle Scholar
  22. 22.
    C. Godsil, S. Kirkland, S. Severini, J. Smith, Phys. Rev. Lett. 109, 050502 (2012)ADSGoogle Scholar
  23. 23.
    H.L. Haselgrove, Phys. Rev. A 72, 062326 (2005)ADSGoogle Scholar
  24. 24.
    D. Burgarth, V. Giovannetti, S. Bose, Phys. Rev. A 75, 062327 (2007)ADSGoogle Scholar
  25. 25.
    D. Burgarth, Eur. Phys. J. Spec. Top. 151, 147 (2007)Google Scholar
  26. 26.
    A.I. Zenchuk, J. Phys. A Math. Gen. 45, 115306 (2012)MathSciNetADSGoogle Scholar
  27. 27.
    S. Bose, Contemp. Phys. 48, 13 (2007)ADSGoogle Scholar
  28. 28.
    R.J. Cook, B.W. Shore, Phys. Rev. A 20, 539 (1979)ADSGoogle Scholar
  29. 29.
    G.M. Nikolopoulos, D. Petrosyan, P. Lambropoulos, J. Phys. Condens. Matter 16, 4991 (2004)ADSGoogle Scholar
  30. 30.
    C. Albanese, M. Christandl, N. Datta, A. Ekert, Phys. Rev. Lett. 93, 230502 (2004)MathSciNetADSGoogle Scholar
  31. 31.
    N.M. Atakishiyev, E.I. Jafarov, S.M. Nagiyev, K.B. Wolf, Rev. Mex. de Fis. 44, 235 (1998)MathSciNetGoogle Scholar
  32. 32.
    T. Shi, Y. Li, Z. Song, C.P. Sun, Phys. Rev. A 71, 032309 (2005)ADSGoogle Scholar
  33. 33.
    M.H. Yung, S. Bose, Phys. Rev. A 71, 032310 (2005)ADSGoogle Scholar
  34. 34.
    P. Karbach, J. Stolze, Phys. Rev. A 72, 030301(R) (2005)Google Scholar
  35. 35.
    G.M.L. Gladwell, Inverse Problems in Vibration, 2nd edn. (Kluwer, Dordrecht, 2004)Google Scholar
  36. 36.
    M.T. Chu, G.H. Golub, Inverse Eigenvalue Problems: Theory, Algorithms, and Applications (Oxford University Press, Oxford, 2005)Google Scholar
  37. 37.
    Y. Wang, F. Shuang, H. Rabitz, Phys. Rev. A 84, 012307 (2011)ADSGoogle Scholar
  38. 38.
    V. Kostak, G.M. Nikolopoulos, I. Jex, Phys. Rev. A 75, 042319 (2007)ADSGoogle Scholar
  39. 39.
    L. Vinet, A. Zhedanov, Phys. Rev. A 86, 052319 (2012)ADSGoogle Scholar
  40. 40.
    A. Kay, Int. J. Quantum Inf. 8, 641 (2010)zbMATHGoogle Scholar
  41. 41.
    M.B. Plenio, F.L. Semião, New J. Phys. 7, 73 (2005)ADSGoogle Scholar
  42. 42.
    A. Wójcik, T. Łuczak, P. Kurzyński, A. Grudka, T. Gdala, M. Bednarska, Phys. Rev. A 72, 034303 (2005)MathSciNetADSGoogle Scholar
  43. 43.
    Y. Li, T. Shi, B. Chen, Z. Song, C.P. Sun, Phys. Rev. A 71, 022301 (2005)ADSGoogle Scholar
  44. 44.
    L. Campos Venuti, C. Degli Esposti Boschi, M. Roncaglia, Phys. Rev. Lett. 99, 060401 (2007)Google Scholar
  45. 45.
    S. Oh, Y.P. Shim, J. Fei, M. Friesen, X. Hu, Phys. Rev. B 85, 224418 (2012)ADSGoogle Scholar
  46. 46.
    G. Gualdi, V. Kostak, I. Marzoli, P. Tombesi, Phys. Rev. A 78, 022325 (2008)ADSGoogle Scholar
  47. 47.
    N. Yao, L. Jiang, A.V. Gorshkov, Z.X. Gong, A. Zhai, L.M. Duan, M.D. Lukin, Phys. Rev. Lett. 106, 040505 (2011)ADSGoogle Scholar
  48. 48.
    A. Casaccino, S. Lloyd, S. Mancini, S. Severini, Int. J. Quantum Inf. 7, 1417 (2009)zbMATHGoogle Scholar
  49. 49.
    T. Linneweber, J. Stolze, G.S. Uhrig, Int. J. Quantum Inf. 10, 1250029 (2012)Google Scholar
  50. 50.
    A. Zwick, O. Osenda, J. Phys. A Math. Gen. 44, 105302 (2011)MathSciNetADSGoogle Scholar
  51. 51.
    L. Banchi, T.J.G. Apollaro, A. Cuccoli, R. Vaia, P. Verrucchi, Phys. Rev. A 82, 052321 (2010)ADSGoogle Scholar
  52. 52.
    L. Banchi, T.J.G. Apollaro, A. Cuccoli, R. Vaia, P. Verrucchi, New J. Phys. 13, 123006 (2011)ADSGoogle Scholar
  53. 53.
    T.J.G. Apollaro, L. Banchi, A. Cuccoli, R. Vaia, P. Verrucchi, Phys. Rev. A 85, 052319 (2012)ADSGoogle Scholar
  54. 54.
    G. De Chiara, D. Rossini, S. Montangero, R. Fazio, Phys. Rev. A 72, 012323 (2005)ADSGoogle Scholar
  55. 55.
    M. Christandl, N. Datta, T.C. Dorlas, A. Ekert, A. Kay, A.J. Landahl, Phys. Rev. A 71, 032312 (2005)ADSGoogle Scholar
  56. 56.
    A. Kay, Phys. Rev. A 73, 032306 (2006)MathSciNetADSGoogle Scholar
  57. 57.
    D. Petrosyan, G.M. Nikolopoulos, P. Lambropoulos, Phys. Rev. A 81, 042307 (2010)ADSGoogle Scholar
  58. 58.
    R. Ronke, T.P. Spiller, I. D’Amico, Phys. Rev. A 83, 012325 (2011)ADSGoogle Scholar
  59. 59.
    T. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O’Brien, Nature 464, 45 (2010)ADSGoogle Scholar
  60. 60.
    M.A. Jafarizadeh, R. Sufiani, Phys. Rev. A 77, 022315 (2008)ADSGoogle Scholar
  61. 61.
    D.I. Tsomokos, M.B. Plenio, I. de Vega, S.F. Huelga, Phys. Rev. A 78, 062310 (2008)ADSGoogle Scholar
  62. 62.
    S.I. Doronin, E.B. Fel’dman, A.I. Zenchuk, Phys. Rev. A 79, 042310 (2009)Google Scholar
  63. 63.
    V. Kendon, C. Tamon, J. Comput. Theor. Nanosci. 8, 422 (2011)Google Scholar
  64. 64.
    D.I. Tsomokos, Phys. Rev. A 83, 052315 (2011)ADSGoogle Scholar
  65. 65.
    A. Ajoy, P. Cappellaro, Phys. Rev. B 87, 064303 (2013)ADSGoogle Scholar
  66. 66.
    G.M. Nikolopoulos, D. Petrosyan, P. Lambropoulos, Europhys. Lett. 65, 297 (2004)ADSGoogle Scholar
  67. 67.
    S. Yang, A. Bayat, S. Bose, Phys. Rev. A 82, 022336 (2010)ADSGoogle Scholar
  68. 68.
    B. Kramer, A. MacKinnon, Rep. Prog. Phys. 56, 1469 (1993)ADSGoogle Scholar
  69. 69.
    M. Inui, S. Trugman, E. Abrahams, Phys. Rev. B 49, 3190 (1994)ADSGoogle Scholar
  70. 70.
    C.K. Burrell, T.J. Osborne, Phys. Rev. Lett. 99, 167201 (2007)ADSGoogle Scholar
  71. 71.
    J.P. Keating, N. Linden, J.C.F. Matthews, A. Winter, Phys. Rev. A 76, 012315 (2007)ADSGoogle Scholar
  72. 72.
    J. Allcock, N. Linden, Phys. Rev. Lett. 102, 110501 (2009)MathSciNetADSGoogle Scholar
  73. 73.
    C.K. Burrell, J. Eisert, T.J. Osborne, Phys. Rev. A 80, 052319 (2009)ADSGoogle Scholar
  74. 74.
    D.I. Tsomokos, M.J. Hartmann, S.F. Huelga, M.B. Plenio, New J. Phys. 9, 79 (2007)ADSGoogle Scholar
  75. 75.
    F. Benatti, R. Floreanini, V. Karimipour, Phys. Rev. A 86, 062335 (2012)ADSGoogle Scholar
  76. 76.
    M. Bruderer, K. Franke, S. Ragg, W. Belzig, D. Obreschkow, Phys. Rev. A 85, 022312 (2012)ADSGoogle Scholar
  77. 77.
    S. Lorenzo, T.J.G. Apollaro, A. Sindona, F. Plastina, Phys. Rev. A 87, 042313 (2013)ADSGoogle Scholar
  78. 78.
    M. Bellec, G.M. Nikolopoulos, S. Tzortzakis, Opt. Lett. 37, 4504 (2012)Google Scholar
  79. 79.
    A. Perez-Leija, R. Keil, A. Kay, H. Moya-Cessa, S. Nolte, L.C. Kwek, B.M. Rodríguez-Lara, A. Szameit, D.N. Christodoulides, Phys. Rev. A 87, 012309 (2013)ADSGoogle Scholar
  80. 80.
    A. Romito, R. Fazio, C. Bruder, Phys. Rev. B 71, R100501 (2005)ADSGoogle Scholar
  81. 81.
    F.W. Strauch, C.J. Williams, Phys. Rev. B 78, 094516 (2008)ADSGoogle Scholar
  82. 82.
    J. Majer, J.M. Chow, J.M. Gambetta, J. Koch, B.R. Johnson, J.A. Schreier, L. Frunzio, D.I. Schuster, A.A. Houck, A. Wallraff, A. Blais, M.H. Devoret, S.M. Girvin, R.J. Schoelkopf, Nature 449, 443 (2007)ADSGoogle Scholar
  83. 83.
    M.A. Sillanpää, J.I. Park, R.W. Simmonds, Nature 449, 438 (2007)ADSGoogle Scholar
  84. 84.
    A. Lyakhov, C. Bruder, New J. Phys. 7, 181 (2005)MathSciNetADSGoogle Scholar
  85. 85.
    A.O. Lyakhov, C. Bruder, Phys. Rev. B 74, 235303 (2006)ADSGoogle Scholar
  86. 86.
    D. Petrosyan, P. Lambropoulos, Opt. Commun. 264, 419 (2006)ADSGoogle Scholar
  87. 87.
    I. D’Amico, Microelectron. J. 37, 1440 (2006)Google Scholar
  88. 88.
    T.P. Spiller, I. D’Amico, B.W. Lovett, New J. Phys. 9, 20 (2007)ADSGoogle Scholar
  89. 89.
    U. Dorner, P. Fedichev, D. Jaksch, M. Lewenstein, P. Zoller, Phys. Rev. Lett. 91, 073601 (2003)ADSGoogle Scholar
  90. 90.
    L.M. Duan, E. Demler, M.D. Lukin, Phys. Rev. Lett. 91, 090402 (2003)ADSGoogle Scholar
  91. 91.
    M.J. Hartmann, F.G.S.L. Brandão, M.B. Plenio, Phys. Rev. Lett. 99, 160501 (2007)ADSGoogle Scholar
  92. 92.
    M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen(De), U. Sen, Adv. Phys. 56, 243 (2007)Google Scholar
  93. 93.
    S. Ospelkaus, A. Pe’er, K.K. Ni, J.J. Zirbel, B. Neyenhuis, S. Kotochigova, P.S. Julienne, J. Ye, D.S. Jin, Nat. Phys. 4, 622 (2008)Google Scholar
  94. 94.
    B.P. Lanyon, C. Hempel, D. Nigg, M. Müller, R. Gerritsma, F. Zähringer, P. Schindler, J.T. Barreiro, M. Rambach, G. Kirchmair, M. Hennrich, P. Zoller, R. Blatt, C.F. Roos, Science 334, 57 (2011)ADSGoogle Scholar
  95. 95.
    Z.L. Mádi, B. Brutscher, T. Schulte-Herbrüggen, R. Brüschweiler, R.R. Ernst, Chem. Phys. Lett. 268, 300 (1997)ADSGoogle Scholar
  96. 96.
    D.G. Cory, A.F. Fahmy, T.F. Havel, Proc. Natl. Acad. Sci. USA 94, 1634 (1997)ADSGoogle Scholar
  97. 97.
    N.A. Gershenfeld, I.L. Chuang, Science 275, 350 (1997)MathSciNetzbMATHGoogle Scholar
  98. 98.
    P. Cappellaro, L. Jiang, J.S. Hodges, M.D. Lukin, Phys. Rev. Lett. 102, 210502 (2009)ADSGoogle Scholar
  99. 99.
    P. Neumann, R. Kolesov, B. Naydenov, J. Beck, F. Rempp, M. Steiner, V. Jacques, G. Balasubramanian, M.L. Markham, D.J. Twitchen, S. Pezzagna, J. Meijer, J. Twamley, F. Jelezko, J. Wrachtrup, Nat. Phys. 6, 249 (2010)Google Scholar
  100. 100.
    N.Y. Yao, L. Jiang, A.V. Gorshkov, P.C. Maurer, G. Giedke, J.I. Cirac, M.D. Lukin, Nat. Commun. 3, 800 (2012)ADSGoogle Scholar
  101. 101.
    Y. Ping, B.W. Lovett, S.C. Benjamin, E.M. Gauger, Phys. Rev. Lett. 110, 100503 (2013)ADSGoogle Scholar
  102. 102.
    W. Zurek, Rev. Mod. Phys. 75, 715 (2003)MathSciNetADSzbMATHGoogle Scholar
  103. 103.
    A. Pomeransky, D. Shepelyansky, Phys. Rev. A 69, 014302 (2004)ADSGoogle Scholar
  104. 104.
    T. Apollaro, F. Plastina, Open Syst. Inf. Dyn. 14, 41 (2007)MathSciNetzbMATHGoogle Scholar
  105. 105.
    G.A. Álvarez, D. Suter, Phys. Rev. Lett. 104, 230403 (2010)Google Scholar
  106. 106.
    G.A. Álvarez, E.P. Danieli, P.R. Levstein, H.M. Pastawski, Phys. Rev. A 82, 012310 (2010)ADSGoogle Scholar
  107. 107.
    G.A. Álvarez, D. Suter, Phys. Rev. A 84, 012320 (2011)ADSGoogle Scholar
  108. 108.
    M.A. Nielsen, E. Knill, R. Laflamme, Nature 396, 52 (1998)ADSGoogle Scholar
  109. 109.
    Z.L. Madi, R. Brüschweiler, R.R. Ernst, J. Chem. Phys. 109, 10603 (1998)ADSGoogle Scholar
  110. 110.
    N. Linden, H. Barjat, E. Kupce, R. Freeman, Chem. Phys. Lett. 307, 198 (1999)ADSGoogle Scholar
  111. 111.
    L. Müller, A. Kumar, T. Baumann, R.R. Ernst, Phys. Rev. Lett. 32, 1402 (1974)ADSGoogle Scholar
  112. 112.
    G.A. Álvarez, E.P. Danieli, P.R. Levstein, H.M. Pastawski, J. Chem. Phys. 124, 194507 (2006)ADSGoogle Scholar
  113. 113.
    G.A. Álvarez, P.R. Levstein, H.M. Pastawski, Physica B 398, 438 (2007)ADSGoogle Scholar
  114. 114.
    T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O’Brien, Nature 464, 45 (2010)ADSGoogle Scholar
  115. 115.
    J.I. Cirac, P. Zoller, Nat. Phys. 8, 264 (2012)Google Scholar
  116. 116.
    I. Bloch, J. Dalibard, S. Nascimbène, Nat. Phys. 8, 267 (2012)Google Scholar
  117. 117.
    R. Blatt, C.F. Roos, Nat. Phys. 8, 277 (2012)Google Scholar
  118. 118.
    A. Aspuru-Guzik, P. Walther, Nat. Phys. 8, 285 (2012)Google Scholar
  119. 119.
    A.A. Houck, H.E. Türeci, J. Koch, Nat. Phys. 8, 292 (2012)Google Scholar
  120. 120.
    E. Knill, R. Laflamme, Phys. Rev. Lett. 81, 5672 (1998)ADSGoogle Scholar
  121. 121.
    H.M. Pastawski, P.R. Levstein, G. Usaj, Phys. Rev. Lett. 75, 4310 (1995)ADSGoogle Scholar
  122. 122.
    H.M. Pastawski, G. Usaj, P.R. Levstein, Chem. Phys. Lett. 261, 329 (1996)ADSGoogle Scholar
  123. 123.
    V.N. Prigodin, B.L. Altshuler, K.B. Efetov, S. Iida, Phys. Rev. Lett. 72, 546 (1994)ADSGoogle Scholar
  124. 124.
    P.R. Levstein, G. Usaj, H.M. Pastawski, J. Chem. Phys. 108, 2718 (1998)ADSGoogle Scholar
  125. 125.
    P. Cappellaro, C. Ramanathan, D.G. Cory, Phys. Rev. A 76, 032317 (2007)ADSGoogle Scholar
  126. 126.
    P. Cappellaro, C. Ramanathan, D.G. Cory, Phys. Rev. Lett. 99, 250506 (2007)ADSGoogle Scholar
  127. 127.
    E. Rufeil-Fiori, C.M. Sanchez, F.Y. Oliva, H.M. Pastawski, P.R. Levstein, Phys. Rev. A 79, 032324 (2009)ADSGoogle Scholar
  128. 128.
    W. Zhang, P. Cappellaro, N. Antler, B. Pepper, D.G. Cory, V.V. Dobrovitski, C. Ramanathan, L. Viola, Phys. Rev. A 80, 052323 (2009)ADSGoogle Scholar
  129. 129.
    P. Cappellaro, L. Viola, C. Ramanathan, Phys. Rev. A 83, 032304 (2011)ADSGoogle Scholar
  130. 130.
    C. Ramanathan, P. Cappellaro, L. Viola, D.G. Cory, New J. Phys. 13, 103015 (2011)ADSGoogle Scholar
  131. 131.
    S.I. Doronin, E.B. Fel’dman, Solid State Nucl. Magn. Reson. 28, 111 (2005)Google Scholar
  132. 132.
    J. Zhang, G.L. Long, W. Zhang, Z. Deng, W. Liu, Z. Lu, Phys. Rev. A 72, 012331 (2005)ADSGoogle Scholar
  133. 133.
    A. Ajoy, R.K. Rao, A. Kumar, P. Rungta, Phys. Rev. A 85, 030303 (2012)ADSGoogle Scholar
  134. 134.
    G.A. Álvarez, M. Mishkovsky, E.P. Danieli, P.R. Levstein, H.M. Pastawski, L. Frydman, Phys. Rev. A 81, 060302(R) (2010)Google Scholar
  135. 135.
    A. Ajoy, G.A. Álvarez, D. Suter, Phys. Rev. A 83, 032303 (2011)ADSGoogle Scholar
  136. 136.
    A. Ajoy, P. Cappellaro, Phys. Rev. Lett. 110, 220503 (2013)ADSGoogle Scholar
  137. 137.
    J. Zhang, N. Rajendran, X. Peng, D. Suter, Phys. Rev. A 76, 012317 (2007)ADSGoogle Scholar
  138. 138.
    J. Zhang, M. Ditty, D. Burgarth, C.A. Ryan, C.M. Chandrashekar, M. Laforest, O. Moussa, J. Baugh, R. Laflamme, Phys. Rev. A 80, 012316 (2009)ADSGoogle Scholar
  139. 139.
    H.G. Krojanski, D. Suter, Phys. Rev. Lett. 93, 090501 (2004)ADSGoogle Scholar
  140. 140.
    H.G. Krojanski, D. Suter, Phys. Rev. Lett. 97, 150503 (2006)ADSGoogle Scholar
  141. 141.
    H.G. Krojanski, D. Suter, Phys. Rev. A 74, 062319 (2006)ADSGoogle Scholar
  142. 142.
    M. Lovric, H.G. Krojanski, D. Suter, Phys. Rev. A 75, 042305 (2007)ADSGoogle Scholar
  143. 143.
    C. Burrell, J. Eisert, T. Osborne, Phys. Rev. A 80, 052319 (2009)ADSGoogle Scholar
  144. 144.
    P. Hauke, F.M. Cucchietti, L. Tagliacozzo, I. Deutsch, M. Lewenstein, Rep. Prog. Phys. 75, 082401 (2012)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Joachim Stolze
    • 1
    Email author
  • Gonzalo A. Álvarez
    • 2
  • Omar Osenda
    • 3
  • Analia Zwick
    • 2
  1. 1.Institut für PhysikTechnische Universität DortmundDortmundGermany
  2. 2.Department of Chemical PhysicsWeizmann Institute of ScienceRehovotIsrael
  3. 3.Facultad de Matemática, Astronomía y FísicaUniversidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations