Advertisement

Improving Decision-Making for Clinical Research and Health Administration

  • Alexandra Pomares-Quimbaya
  • Rafael A. González
  • Wilson-Ricardo Bohórquez
  • Oscar Mauricio Muñoz
  • Olga Milena García
  • Dario Londoño
Part of the Intelligent Systems Reference Library book series (ISRL, volume 55)

Abstract

This chapter presents a health decision-support system called DISEArch that allows the identification and analysis of relevant EHR for decision-making. It uses structured and non-structured data, and provides analytical as well as visualization facilities over individual or sets of EHR. DISEArch proves to be useful to empower researchers during analysis processes and to reduce considerably the time required to obtain relevant EHR for a study. The analysis of semantic distance between EHR should also be further developed. As with any information systems project, a conversation needs to be put in place to realize the full potential that IT-based systems offer for people, in this case within the medical domain. It is a mutual learning experience that requires constant translations, frequent prototype discussions, grounding of new IT-based support in current practices and clear identification of existing problems and future opportunities that are opened up in order to enrich the momentum of the project, enlarge the community of early adopters and guaranteeing the continued financial, scientific and administrative support for the project from management stakeholders. Our experience is very positive and we intend to further pursue this approach and extract lessons learned for similar projects.

Keywords

Health-care DSS IT service system Data mining 

Notes

Acknowledgments

This work is part of the project entitled “Identificación semiautomática de pacientes con enfermedades crónicas a partir de la exploración retrospectiva de las historias clínicas electrónicas registradas en el sistema SAHI del Hospital San Ignacio” funded by Hospital Universitario San Ignacio and Pontificia Universidad Javeriana.

References

  1. 1.
    Gresh, D.L., Rabenhorst, D.A., Shabo, A., Slavin, S.: PRIMA: A case study of using information visualization techniques for patient record analysis. In: Proceedings of the IEEE Visualization, pp. 509–512 (2002)Google Scholar
  2. 2.
    Lisboa, P.J.G.: A review of evidence of health benefit from artificial neural networks in medical intervention. Neural Netw. 15, 11–39 (2002)CrossRefGoogle Scholar
  3. 3.
    McCauley, N., Ala, M.: The use of expert systems in the healthcare industry. Inform. Manage. 22, 227–235 (1992)CrossRefGoogle Scholar
  4. 4.
    Kalim, K., Carson, E., Cramp, D.: The role of soft systems methodology in healthcare policy provision and decision support. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, pp. 5025–5030 (2004)Google Scholar
  5. 5.
    Kalim, K., Carson, E.R., Cramp, D.: An illustration of whole systems thinking. Health Serv. Manage. Res. 19, 174–185 (2006)CrossRefGoogle Scholar
  6. 6.
    Hesse, B.W., Shneiderman, B.: eHealth research from the user’s perspective. Am. J. Prev. Med. 32, S97–S103 (2007)CrossRefGoogle Scholar
  7. 7.
    Carroll, J.M., Rosson, M.B.: Participatory design in community informatics. Des. Stud. 28, 243–261 (2007)Google Scholar
  8. 8.
    Mao, J.-Y., Vredenburg, K., Smith, P.W., Carey, T.: The state of user-centered design practice. Commun. ACM 48, 105–109 (2005)CrossRefGoogle Scholar
  9. 9.
    Bellazzi, R., Zupan, B.: Predictive data mining in clinical medicine: current issues and guidelines. Int. J. Med. Inform. 77, 81–97 (2008)Google Scholar
  10. 10.
    Windle, P.E.: Data mining: an excellent research tool. J. Perianesthesia Nurs.: Official J. Am. Soc. PeriAnesthesia Nurs./Am. Soc. Perianesthesia Nurs. 19, 355–356 (2004)Google Scholar
  11. 11.
    Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research. MIS Q. 28, 75–105 (2004)Google Scholar
  12. 12.
    Hevner, A.R.: A three cycle view of design science research. Scand. J. Inform. Syst. 19, 39–64 (2007)Google Scholar
  13. 13.
    Shearer, C.: The CRISP-DM Model: The new blueprint for data mining. J. Data Warehouse. 5, 13–22 (2000)Google Scholar
  14. 14.
    Gaspar, L., Scott, C., Rotman, M., Asbell, S., Phillips, T., Wasserman, T., McKenna, W.G., Byhardt, R.: Recursive partitioning analysis (RPA) of prognostic factors in three radiation therapy oncology group (RTOG) brain metastases trials. Int. J. Radiat. Oncol. Biol. Phys. 37, 745–751 (1997)CrossRefGoogle Scholar
  15. 15.
    Highet, V.S., Forrest, A., Ballow, C.H., Schentag, J.J.: Antibiotic dosing issues in lower respiratory tract infection: population-derived area under inhibitory curve is predictive of efficacy. J. Antimicrob. Chemother. 43, 55–63 (1999)CrossRefGoogle Scholar
  16. 16.
    Burbidge, R., Trotter, M., Buxton, B., Holden, S.: Drug design by machine learning: Support vector machines for pharmaceutical data analysis. Comput. Chem. 26, 5–14 (2001)CrossRefGoogle Scholar
  17. 17.
    Kroes, R., Renwick, A.G., Cheeseman, M., Kleiner, J., Mangelsdorf, I., Piersma, A., Schilter, B., Schlatter, J., Van Schothorst, F., Vos, J.G., Würtzen, G.: Structure-based thresholds of toxicological concern (TTC): Guidance for application to substances present at low levels in the diet. Food Chem. Toxicol. 42, 65–83 (2004)CrossRefGoogle Scholar
  18. 18.
    Suppes, T., Dennehy, E.B., Hirschfeld, R.M.A., Altshuler, L.L., Bowden, C.L., Calabrese, J.R., Crismon, M.L., Ketter, T.A., Sachs, G.S., Swann, A.C.: The Texas Implementation of Medication Algorithms: Update to the algorithms for treatment of bipolar I disorder. J. Clin. Psychiatry 66, 870–886 (2005)CrossRefGoogle Scholar
  19. 19.
    Hill, R.P., Lubarsky, D.A., Phillips-Bute, B., Fortney, J.T., Creed, M.R., Glass, P.S.A., Gan, T.J.: Cost-effectiveness of prophylactic antiemetic therapy with ondansetron, droperidol, or placebo. Anesthesiology 92, 958–967 (2000)CrossRefGoogle Scholar
  20. 20.
    Adams, P.C., Gregor, J.C., Kertesz, A.E., Valberg, L.S.: Screening blood donors for hereditary hemochromatosis: Decision analysis model based on a 30-year database. Gastroenterology 109, 177–188 (1995)CrossRefGoogle Scholar
  21. 21.
    Hess, K.R., Abbruzzese, M.C., Lenzi, R., Raber, M.N., Abbruzzese, J.L.: Classification and regression tree analysis of 1000 consecutive patients with unknown primary carcinoma. Clin. Cancer Res. 5, 3403–3410 (1999)Google Scholar
  22. 22.
    Wang, T.D., Wongsuphasawat, K., Plaisant, C., Shneiderman, B.: Extracting insights from electronic health records: case studies, a visual analytics process model, and design recommendations. J. Med. Syst. 35, 1135–1152 (2011)Google Scholar
  23. 23.
    Thiessard, F., Mougin, F., Diallo, G., Jouhet, V., Cossin, S., Garcelon, N., Campillo, B., Jouini, W., Grosjean, J., Massari, P., Griffon, N., Dupuch, M., Tayalati, F., Dugas, E., Balvet, A., Grabar, N., Pereira, S., Frandji, B., Darmoni, S., Cuggia, M.: RAVEL: retrieval and visualization in electronic health records. Stud. Health Technol. Inform. 180, 194–198 (2012)Google Scholar
  24. 24.
    Hsu, W., Taira, R.K., El-Saden, S., Kangarloo, H., Bui, A.A.T.: Context-based electronic health record: toward patient specific healthcare. IEEE Trans. Inform. Technol. Biomed.: Publi. IEEE Eng. Med. Biol. Soc. 16, 228–234 (2012)Google Scholar
  25. 25.
    Muller, H., Maurer, H., Reihs, R., Sauer, S., Zatloukal, K.: Adaptive visual symbols for personal health records. In: Proceedings of the 2011 15th International Conference on Information Visualisation (IV), pp. 220–225 (2011)Google Scholar
  26. 26.
    Bui, A.A.T., Aberle, D.R., Kangarloo, H.: TimeLine: visualizing integrated patient records, IEEE Trans. Inform. Technol. Biomed.: Publi. IEEE Eng. Med. Biol. Soc. 11, 462–473 (2007)Google Scholar
  27. 27.
    Arguedas-Arguedas, O.: Tipos de diseño en estudios de investigación biomédica. Acta Médica Costarricense 52, 16–18 (2010)Google Scholar
  28. 28.
    Calandre-Hoenigsfeld, L., Bermejo-Pareja, F.: Difficult-to-classify symptoms and syndromes in a series of 5398 neurological outpatients diagnosed according to ICD-10 criteria. Síntomas y síndromes de difícil clasifcación en una serie ambulatoria de 5.398 pacientes neurológicos diagnosticados según la CIE-10 53, 513–523 (2011)Google Scholar
  29. 29.
    Tanno, L.K., Ganem, F., Demoly, P., Toscano, C.M., Bierrenbach, A.L.: Undernotification of anaphylaxis deaths in Brazil due to difficult coding under the ICD-10. Allergy: Eur. J. Allergy Clin. Immunol. 67, 783–789 (2012)CrossRefGoogle Scholar
  30. 30.
    Komajda, M., Lapuerta, P., Hermans, N., Gonzalez-Juanatey, J.R., Van Veldhuisen, D.J., Erdmann, E., Tavazzi, L., Poole-Wilson, P., Le Pen, C.: Adherence to guidelines is a predictor of outcome in chronic heart failure: the MAHLER survey. Eur. Heart J. 26, 1653–1659 (2005)CrossRefGoogle Scholar
  31. 31.
    Schmid, H.: Probabilistic Part-of-Speech Tagging Using Decision Trees. In: Proceedings of the International Conference on New Methods in Language Processing, Manchester, UK, (1994) Google Scholar
  32. 32.
    Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V., Aswani, N., Roberts, I., Gorrell, G., Funk, A., Roberts, A., Damljanovic, D., Heitz, T., Greenwood, M., Saggion, H., Petrak, J., Li, Y., Peters, W., Others: Text Processing with GATE (Version 6), University of Sheffield Department of Computer Science Sheffield (2011)Google Scholar
  33. 33.
    Leenards, P., Pultorak, D., Henry, C.: MOF: V4.0, (Microsoft Operations Framework 4.0): Version 4.0: A Pocket Guide, Van Haren Publishing (2008) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Alexandra Pomares-Quimbaya
    • 1
  • Rafael A. González
    • 1
  • Wilson-Ricardo Bohórquez
    • 1
  • Oscar Mauricio Muñoz
    • 2
  • Olga Milena García
    • 1
  • Dario Londoño
    • 1
  1. 1.Pontificia Universidad JaverianaBogotáColombia
  2. 2.Hospital Universitario San IgnacioBogotáColombia

Personalised recommendations