Attitude-based Consensus Model for Heterogeneous Multi-criteria Large-Scale Group Decision Making: Application to IT-based Services Management

Part of the Intelligent Systems Reference Library book series (ISRL, volume 55)


IT-based services management in organizations frequently requires the use of decision making approaches. Several multi-criteria and group decision making models have been proposed for the management of IT-based services in the literature. However, there are some important aspects when a large number of decision makers take part, that have not been considered yet in these organizational contexts, such as: the existence of multiple subgroups of decision makers with different attitudes and/or interests, the necessity of applying a consensus reaching process to make highly accepted collective decisions, and the problem of dealing with heterogeneous contexts, since decision makers from different areas might provide preferences in different information domains. This chapter proposes an attitude-based consensus model for IT-based services management, that deals with heterogeneous information and multiple criteria. An example that illustrates its application to a real-life problem about selecting an IT-based banking service for its improvement is also presented.


IT-based services Multi-criteria group decision making Consensus reaching processes Heterogeneous information Attitude 



This work was partially supported by the Research Project TIN-2009-08286 and ERDF.


  1. 1.
    Mora, M., O’Connor, R., Raisinghani, M., Macías-Luévano, J., Gelman, O.: An IT service engineering and management framework (ITS-EMF). Int. J. Serv. Sci. Manag. Eng. Technol. 2(2), 1–15 (2011)CrossRefGoogle Scholar
  2. 2.
    Weist, P.: An AHP-based decision making framework for IT service design. In: MWAIS 2009 proceedings, Paper 11 (2009)Google Scholar
  3. 3.
    Zhu, F., Wymer, W., Chen, I.: IT-based services and service quality in consumer banking. Int. J. Serv. Ind. Manag. 13(1), 69–90 (2002)CrossRefGoogle Scholar
  4. 4.
    Queiroz, M., Moura, A., Sauvé, J., Bartolini, C., Hickey, M.: A framework to support investment decisions using multi-criteria and under uncertainty in IT service portfolio management. In: Proceedings of 2010 IEEE/IFIP network operations and management symposium workshops, pp. 103–110 (2010)Google Scholar
  5. 5.
    Karami, A., Guo, Z.: A fuzzy logic multi-criteria decision framework for selecting IT service providers. In: Proceedings of the 45th Hawaii international conference on system sciences, 2012, pp. 1118–1127 (2012)Google Scholar
  6. 6.
    Parreiras, R., Ekel, P., Martini, J., Palhares, R.: A flexible consensus scheme for multicriteria group decision making under linguistic assessments. Inf. Sci. 180(7), 1075–1089 (2010)CrossRefGoogle Scholar
  7. 7.
    Pokehar, S., Ramachandran, M.: Application of multi-criteria decision making to sustainable energy planning—a review. Sustain. Energy Rev. 8(4), 365–381 (2004)CrossRefGoogle Scholar
  8. 8.
    Zhang, G., Lu, J.: An integrated group decision-making method dealing with fuzzy preferences for alternatives and individual judgements for selection criteria. Group Decis. Negot. 12(6), 501–505 (2003)CrossRefGoogle Scholar
  9. 9.
    Pedrycz, W., Ekel, P., Parreiras, R.: Fuzzy Multicriteria Decision-Making: Models, Methods and Applications. Wiley, Chichester (2011)Google Scholar
  10. 10.
    Van de Walle, B., Rutkowski, A.: A fuzzy decision support system for IT service continuity threat assessment. Decis. Support Syst. 42(3), 1931–1943 (2006)CrossRefGoogle Scholar
  11. 11.
    Kacprzyk, J.: Group decision making with a fuzzy linguistic majority. Fuzzy Sets Syst. 18(2), 105–118 (1986)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Herrera, F., Martínez, L., Sánchez, P.: Managing non-homogeneous information in group decision making. Eur. J. Oper. Res. 166(1), 115–132 (2005)CrossRefMATHGoogle Scholar
  13. 13.
    Saint, S., Lawson, J.R.: Rules for Reaching Consensus: A Modern Approach to Decision Making. Jossey-Bass, San Francisco (1994)Google Scholar
  14. 14.
    Palomares, I., Liu, J., Xu, Y., Martínez, L.: Modelling experts’ attitudes in group decision making. Soft. Comput. 16(10), 1755–1766 (2012)CrossRefMATHGoogle Scholar
  15. 15.
    Palomares, I., Rodríguez, R., Martínez, L.: An attitude-driven web consensus support system for heterogeneous group decision making. Expert Syst. Appl. 40(1), 139–149 (2013)CrossRefGoogle Scholar
  16. 16.
    Bryson, N.: Group decision-making and the analytic hierarchy process. exploring the consensus-relevant information content. Comput. Oper. Res. Int. J. 23(1), 27–35 (1996)CrossRefMATHGoogle Scholar
  17. 17.
    Keeney, R., Raiffa, H.: Decisions with Multiple Objectives: Preferences and Value Tradeoffs. Cambridge University Press, Cambridge (1993)Google Scholar
  18. 18.
    Lai, Y., Liu, T., Hwang, C.: TOPSIS for MODM. Eur. J. Oper. Res. 76(3), 486–500 (1994) (Cited By (since 1996): 116)Google Scholar
  19. 19.
    Moura, J.: Survey and interviews on IT financial management. (2008)
  20. 20.
    Butler, C., Rothstein, A.: On Conflict and Consensus: A Handbook on Formal Consensus Decision Making. Food Not Bombs Publishing, Takoma Park (2006)Google Scholar
  21. 21.
    Herrera-Viedma, E., Herrera, F., Chiclana, F.: A consensus model for multiperson decision making with different preference structures. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 32(3), 394–402 (2002)CrossRefGoogle Scholar
  22. 22.
    Fodor, J., Roubens, M.: Fuzzy Preference Modeling and Multicriteria Decision Support. Kluwer, Boston (1995)Google Scholar
  23. 23.
    Orlovsky, S.: Decision-making with a fuzzy preference relation. Fuzzy Sets Syst. 1(3), 155–167 (1978)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Tanino, T.: Fuzzy preference relations in group decision making. In: Kacprzyk, J., Roubens M. (eds.) Non-Conventional Preference Relations in Decision Making, pp. 54–71. Springer, Berlin (1988)Google Scholar
  25. 25.
    Mata, F., Martínez, L., Herrera-Viedma, E.: An adaptive consensus support model for group decision-making problems in a multigranular fuzzy linguistic context. IEEE Trans. Fuzzy Syst. 17(2), 279–290 (2009)CrossRefGoogle Scholar
  26. 26.
    Roubens, M.: Fuzzy sets and decision analysis. Fuzzy Sets Syst. 90(2), 199–206 (1997)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Elzinga, C., Wang, H., Lin, Z., Kumar, Y.: Concordance and consensus. Inf. Sci. 181(12), 2529–2549 (2011)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Herrera-Viedma, E., García-Lapresta, J., Kacprzyk, J., Fedrizzi, M., Nurmi, H., Zadrozny, S. (eds.): Consensual Processes. Studies in Fuzziness and Soft Computing, vol. 267. Springer, Berlin (2011)Google Scholar
  29. 29.
    Kacprzyk, J., Fedrizzi, M.: A “soft” measure of consensus in the setting of partial (fuzzy) preferences. Eur. J. Oper. Res. 34(1), 316–325 (1988)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Yager, R.: Quantifier guided aggregation using OWA operators. Int. J. Intell. Syst. 11, 49–73 (1996)CrossRefGoogle Scholar
  31. 31.
    Martínez, L., Montero, J.: Challenges for improving consensus reaching process in collective decisions. New Math. Nat. Comput. 3(2), 203–217 (2007)CrossRefMATHGoogle Scholar
  32. 32.
    Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. Springer, Berlin (2007)Google Scholar
  33. 33.
    Xu, J., Wu, Z.: A discrete consensus support model for multiple attribute group decision making. Knowledge-based Syst. 24(8), 1196–1202 (2011)CrossRefGoogle Scholar
  34. 34.
    Yager, R.: On orderer weighted averaging aggregation operators in multi-criteria decision making. IEEE Trans. Syst. Man Cybern. 18(1), 183–190 (1988)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Bordogna, G., Fedrizzi, M., Pasi, G.: A linguistic modeling of consensus in group decision making based on OWA operators. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 27(1), 126–133 (1997)Google Scholar
  36. 36.
    Yager, R.: Weighted maximum entropy OWA aggregation with applications to decision making under risk. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 39, 555–564 (2009)CrossRefGoogle Scholar
  37. 37.
    Yager, R., Reformat, M., Gumrah, G.: Fuzziness, OWA and linguistic quantifiers for web selection processes. IEEE International conference on fuzzy systems, 2011, pp. 1751–1758Google Scholar
  38. 38.
    Liu, X., Han, S.: Orness and parameterized RIM quantifier aggregation with OWA operators: a summary. Int. J. Approx. Reason. 48, 77–97 (2008)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Zadeh, L.: A computational approach to fuzzy quantifiers in natural languages. Comput. Math. Appl. 9, 149–184 (1983)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Zadeh, L.: The concept of a linguistic variable and its applications to approximate reasoning. Inf. Sci. Part I, II, III 8, 8, 9, 199–249, 301–357, 43–80 (1975)Google Scholar
  41. 41.
    Herrera-Viedma, E., Martínez, L., Mata, F., Chiclana, F.: A consensus support system model for group decision making problems with multigranular linguistic preference relations. IEEE Trans. Fuzzy Syst. 13(5), 644–658 (2005)CrossRefGoogle Scholar
  42. 42.
    Ghaziri, H.: Information technology in the banking sector: opportunities, threats and strategies. American University of Beirut, Graduate School of Business and Management (1998)Google Scholar
  43. 43.
    Herrera, F., Herrera-Viedma, E., Verdegay, J.: A sequential selection process in group decision making with linguistic assessments. Inf. Sci. 85(1995), 223–239 (1995)CrossRefMATHGoogle Scholar
  44. 44.
    Clemen, R.: Making Hard Decisions: An Introduction to Decision Analysis, 2nd edn. Duxbury Press, Boston (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of JaénJaénSpain

Personalised recommendations