Skip to main content

Part of the book series: Lecture Notes in Applied Mathematics and Mechanics ((LAMM,volume 1))

  • 5045 Accesses

Abstract

Timber from oaks and soft wood was hundreds of years the only material for building ocean going ships. Sufficient strength of wooden ships based only on the practical experience of their builders. The strength of iron ships has been estimated first by William Fairbairn 1860. His method based on a very modern ultimate load concept. A couple of years later John Macquorn Rankin first published the physically correct formulation of the longitudinal bending moment of the whole ship hull structure including a quasi- static wave effect. On occasion of the sinking of the torpedo boat H.M.S. Cobra 1901 the bending test of a similar ship H.M.S. Wolf in a dry-dock has been prepared. The test results were found not in line with the classical bending theory. After a lot of research work Georg Schnadel found 1929 a proper explanation by taking the post buckling behavior of the thin deck plating under consideration. It needs nearly hundred years to consider the probabilistic nature of the seaway into the design formula of the longitudinal strength of ships. Nowadays almost all structural members of the steel design of ships like the stiffened plates of the shell, bulkheads and decks has be calculated by the classical theory of elasticity, including post buckling effects following the rules of the classification societies. Since the end of the last century the Finite Element Method is used not only for structural details but also for the whole hull structure, including the dynamic loads of the seaway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Klawitter, D.G.: Vorlege-Blätter für Schiff- Bauer. Königlich technische Deputation für Gewerbe, Berlin (1835)

    Google Scholar 

  2. van Hüllen, A.: Schiffbau. Verlag von Lipsius & Tischer, Kiel (1888)

    Google Scholar 

  3. Fairbairn, W.: The Strength of Iron Ships. Trans. Inst. of Nav. Arch. I (1860)

    Google Scholar 

  4. Lloyd’s Experiments upon Plates and Modes of Riveting applicable to the Construction of Iron Ships. Discussion contribution to [3]

    Google Scholar 

  5. Grantham, J.: The Strength of Iron Ships. Trans. Inst. of Nav. Arch. I (1860)

    Google Scholar 

  6. Mansell, R.: On the Comparative Strength of Iron Ships. Proceedings of the Scottish Shipbuilders’ Association (1860)

    Google Scholar 

  7. Rankine, W.J.M.: Manual of Applied Mechanics (1858)

    Google Scholar 

  8. Rankine, W.J.M., Watt, I., Barnes, F.K., Napier, R.: Shipbuilding – Theoretical and Practical. William Mackenzie, London (1866)

    Google Scholar 

  9. The index WVH means wave bending moment, vertical hogging; SW still water bending moment; and TH total bending moment, hogging

    Google Scholar 

  10. Walker, F.M.: Ships & Shipbuilders. Seaforth Publishing (2010)

    Google Scholar 

  11. Murray, J.M.: Development of Basis of Longitudinal Strength Standards for Merchant Ships. Trans. of Royal Inst. of Nav. Arch. 108 (1966)

    Google Scholar 

  12. Reed, E.J.: The Strains of Ships in Still Water. Naval Science I, 351 (1872)

    Google Scholar 

  13. Id.: The Distribution of Weight and Buoyancy in Ships. Naval Science I (1872)

    Google Scholar 

  14. Id.: The Strains of Ships at Sea. Naval Science II, 12 (1873)

    Google Scholar 

  15. John, W.: On the Strength of Iron Ships. Trans. of Royal Inst. of Nav. Arch. XV (1874)

    Google Scholar 

  16. Smith, W.E.: Hogging and Sagging Strains in a Seaway as Influenced by Wave Structure. Trans. of Inst. of Nav. Arch. XXIV (1883)

    Google Scholar 

  17. Read, T.C.: On the Variation of the Stresses on Vessels at Sea due to Wave Motion. Trans. of Inst. of Nav. Arch. XXXI (1890)

    Google Scholar 

  18. Kryloff, A.: A New Theory of the Pitching Motion of Ships on Waves, and of the Stresses Produced by this Motion. Nav. Arch. XXXVII (1896)

    Google Scholar 

  19. Alexander, F.H.: The influence of the proportions and form of Ships upon their longitudinal bending Moments among Waves. Trans. of Inst. of Nav. Arch. XLVII (1905)

    Google Scholar 

  20. Schnadel, G.: Die Beanspruchung des Schiffes im Seegang. Dehnungs- und Durchbiegungsmessungen an Bord des MS „San Francisco“ der Hamburg- Amerika Linie. J. STG 37 (1936)

    Google Scholar 

  21. Horn, F.: Hochseemessfahrt, Schwingungs- und Beschleunigungsmessungen. J. STG 37 (1936)

    Google Scholar 

  22. Weinblum, G., Block, W.: Stereophotografische Wellenaufnahmen. J. STG 37 (1936)

    Google Scholar 

  23. Lienau, O.: Messungen über das Arbeiten des Schiffsboden und der Deckbeplattung während der Hochseemessfahrt 1934. J. STG 36 (1937)

    Google Scholar 

  24. Claviez, W.: 50 Jahre Deutsche Werft 1918-1968, Hamburg (1968)

    Google Scholar 

  25. Biles, J.H.: The Strength of Ships, with Special Reference to Experiments and Calculations made upon H.M.S. “Wolf”. Trans. Inst. of Nav. Arch. XVII (1905)

    Google Scholar 

  26. Lehmann, E.: 100 Jahre Schiffbautechnische Festigkeitsforschung. J. STG 98 (2004)

    Google Scholar 

  27. Discussion contribution by Hans Reissner on Schnadel. G.: Die Spannungsverteilung in den Flanschen dünnwandiger Kastenträger. J. STG 27 (1926)

    Google Scholar 

  28. Weber, M.: Grundlagen der Ähnlichkeitsmechanik. J. STG 20 (1919)

    Google Scholar 

  29. Weber, M.: Allgemeines Ähnlichkeitsprinzip der Physik und sein Zusammenhang mit der Dimensionslehre und dem Modelwissenschaft. J. STG 31 (1930)

    Google Scholar 

  30. Schnadel, G.: Elastizitätstheorie und Versuch. J. STG 32 (1931)

    Google Scholar 

  31. Levy, M.: Sur l’équilibre élastique d’une plaque rectangulaire. l’Académie des Sciences de Paris 127 (1899)

    Google Scholar 

  32. Schnadel, G.: Über die Knickung von Platten. J. STG 30 (1929)

    Google Scholar 

  33. Lienau, O.: Versuchseinrichtungen und Ergebnisse des Instituts für Schiffsfestigkeit der Technischen Hochschule Danzig. J. STG 29 (1928)

    Google Scholar 

  34. Wlassov, W.S.: Dünnwandige elastische Stäbe. VEB Verlag für Bauwesen, Berlin (1964)

    Google Scholar 

  35. Timoshenko, S.P.: Erinnerungen, p. 98. Ernst & Sohn, Berlin (2006)

    Google Scholar 

  36. Schnadel, G.: Torsionsversuche. J. STG 34 (1933)

    Google Scholar 

  37. Schultz, H.-G.: Festigkeitsprobleme im Großschiffbau. J. STG 63 (1969)

    Google Scholar 

  38. Nießen, E.: Statische Messungen an einem Aluminium-Modell eines Container-Schiffes, Bericht Nr. 4/1968. Forschungszentrum des Deutschen Schiffbaus, Hamburg (1968)

    Google Scholar 

  39. Woisin, G.: Kollisionsprobleme bei Atomschiffen, p. 999. Hansa (1964)

    Google Scholar 

  40. N.N.: Die Widerstandsfähigkeit verschiedener Bordwandkonstruktionen bei Zusammenstößen, p. 2174. Hansa (1962)

    Google Scholar 

  41. Spinelli, F.: Schutz von Kernreaktoren auf Schiffen gegen Kollisionen, p. 148. S+H (1964)

    Google Scholar 

  42. Minorsky, V.U.: Eine Studie über Schiffskollisionen mit Bezug auf schiffbauliche Schutzmaßnahmen für Kernenergie-Antriebsanlagen, p. S. 163. S+H (1960)

    Google Scholar 

  43. Reckling, A.: Beitrag der Elasto- und Plastomechanik zur Untersuchung von Schiffskollisionen. J. STG 70 (1976)

    Google Scholar 

  44. Welch, J.J.: The Subdivision of Ships. Trans. of Inst. of Nav. Arch. LVII (1915)

    Google Scholar 

  45. Denny, W.: Subdivision of Merchant Vessels: Reports of the Bulkhead Committee, 1912-1915. Trans. of Inst. of Nav. Arch. LVIII (1916)

    Google Scholar 

  46. Height of the tank 17 ft ≈ 5.17 m, 19.5 ft ≈ 5.49 m and 20 ft ≈ 6.1 m

    Google Scholar 

  47. Foster King, J.: Strength of Watertight Bulkheads. Trans. of Inst. of Nav. Arch. LVIII (1916)

    Google Scholar 

  48. Ref. [26]

    Google Scholar 

  49. Caldwell, J.B.: Ultimate Longitudinal Strength. Trans. R.I.N.A. 107 (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lehmann, E. (2014). The Historical Development of the Strength of Ships. In: Stein, E. (eds) The History of Theoretical, Material and Computational Mechanics - Mathematics Meets Mechanics and Engineering. Lecture Notes in Applied Mathematics and Mechanics, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39905-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39905-3_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39904-6

  • Online ISBN: 978-3-642-39905-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics