Finding Data in DNA: Computer Forensic Investigations of Living Organisms

  • Marc B. Beck
  • Eric C. Rouchka
  • Roman V. Yampolskiy
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 114)


Recent advances in genetic engineering have allowed the insertion of artificial DNA strands into the living cells of organisms. Several methods have been developed to insert information into a DNA sequence for the purpose of data storage, watermarking, or communication of secret messages. The ability to detect, extract, and decode messages from DNA is important for forensic data collection and for data security. We have developed a software toolkit that detects the presence of a hidden message within a DNA sequence, and deciphers that message. In order to decode a message we are modifying several existing cryptanalysis tools that have been developed for solving simple substitution ciphers and compare their performance.


Bioinformatics Cryptography DNA computing Natural languages Computer forensics Steganalysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anam, B., Sakib, K., Hossain, A., Dahal, K.: Review on the Advancements of DNA Cryptography. In: International Conference on Software, Knowledge, Information Management and Application, Paro, Bhutan, August 25-27 (2010)Google Scholar
  2. 2.
    Nirenberg, M.: Historical review: Deciphering the genetic code – a personal account. Trends in Biochemical Sciences 29(1), 46–54 (2004)CrossRefGoogle Scholar
  3. 3.
    Jiao, S.-H., Goutte, R.: Code For Encryption Hiding Data Into Genomic DNA. In: International Conference on Software Process (2008)Google Scholar
  4. 4.
    Adleman, L.M.: Molecular Computation of Solutions To Combinatorial Problems. Science, New Series 266(5187), 1021–1024 (1994)Google Scholar
  5. 5.
    Ogihara, M., Ray, A.: Simulating Boolean Circuits on a DNA Computer. RECOMB (1997)Google Scholar
  6. 6.
    Bogard, C.M., Rouchka, E.C., Arazi, B.: DNA media storage. Progress in Natural Science 18, 603–609 (2007)CrossRefGoogle Scholar
  7. 7.
    Arita, M., Ohashi, Y.: Secret Signatures Inside Genomic DNA. Biotechnology Progress 20(5), 1605–1607 (2004)CrossRefGoogle Scholar
  8. 8.
    Yachie, N., Sekiyama, K., Sugahara, J., Ohashi, Y., Tomita, M.: Alignment-Based Approach for Durable Data Storage into Living Organisms. Biotechnology Progress 23(2), 4 (2007); (Epub January 25, 2007)Google Scholar
  9. 9.
    Arita, M.: Comma-free design for DNA words. Communications of the ACM 47(5), 99 (2004)CrossRefGoogle Scholar
  10. 10.
    Heider, D., Barnekow, A.: DNA-based watermarks using the DNA-Crypt algorithm. BMC Bioinformatics 8, 176 (2007) (Epub May 31, 2007)Google Scholar
  11. 11.
    Clelland, C.T., Risca, V., Bancroft, C.: Hiding messages in DNA microdots. Nature, 533–534 (1999)Google Scholar
  12. 12.
    Brenner, S., Williams, S.R., Vermaas, E.H., Storck, T., Moon, K., McCollum, C., et al.: In vitro cloning of complex mixtures of DNA on microbeads: Physical separation of differentially expressed cDNAs. Proceedings of the National Academy of Sciences of the United States of America 97(4), 1665–1670 (2000)CrossRefGoogle Scholar
  13. 13.
    Jiao, S.-H., Goutte, R.: Hiding data in DNA of living organisms. Natural Science 1(3), 181–184 (2009)CrossRefGoogle Scholar
  14. 14.
    Heider, D., Barnekow, A.: DNA watermarks: A proof of concept. BMC Molecular Biology 9, 40 (2008); (Epub April 23, 2008)Google Scholar
  15. 15.
    Gibson, D.G., Glass, J.I., Lartigue, C., Noskov, V.N., Chuang, R.Y., Algire, M.A., et al.: Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329(5987), 52–56 (2010); (Epub May 22, 2010)Google Scholar
  16. 16.
    Bancroft, C., Bowler, T., Bloom, B., Clelland, C.T.: Long-Term Storage of Information in DNA. Science, New Series 293(5536), 1763–1765 (2001)Google Scholar
  17. 17.
    A Y3K bug.pdf. nature biotechnology 18 (2000)Google Scholar
  18. 18.
    Drake, J.W., Charlesworth, B., Charlesworth, D., Crow, J.F.: Rates of Spontaneous mutation. Genetics 148(4), 20 (1998)Google Scholar
  19. 19.
    Smith, G.C., Fiddes, C.C., Hawkins, J.P., Cox, J.P.L.: Some possible codes for encrypting data in DNA. Biotechnology Letters 25(14), 1125–1130 (2003)CrossRefGoogle Scholar
  20. 20.
    Wong, P.C., Wong, K.-K., Foote, H.: Organic Data Memory Using the DNA Approach. Communications of the ACM 46(1), 95–98 (2003)CrossRefGoogle Scholar
  21. 21.
    Tanaka, K., Okamoto, A., Saito, I.: Public-key system using DNA as a one-way function for key distribution. Bio Systems 81(1), 25–29 (2005); (Epub May 27, 2005)Google Scholar
  22. 22.
    Huffman, D.A.: A Method for the Construction of Minimum-Redundancy Codes. In: Proceedings of the IRE, pp. 1098–1102 (1952)Google Scholar
  23. 23.
    Singh, S.: The Code Book: The Evolution of Secrecy from Mary, Queen of Scots to Quantum Cryptography. Doubleday, New York (1999)Google Scholar
  24. 24.
    Jupiter, D.C., Ficht, T.A., Qin, Q.-M., de Figueiredo, P.: DNA Watermarking of Infectious Agents Progress and Prospects. Public Library of Science Pathogens 6(6), 1–3 (2010)Google Scholar
  25. 25.
    Johnson, N.F., Jajodia, S.: Steganalysis: The Investigation of Hidden Information. In: IEEE Information Technology Conference, Syracuse, NY (1998)Google Scholar
  26. 26.
    Li, B., Huang, J., Shi, Y.Q.: Steganalysis of YASS. IEEE Transactions on Information Forensics and Security 4(3), 369–382 (2009)CrossRefGoogle Scholar
  27. 27.
    Xin-guang, S., Hui, L., Zhong-liang, Z.: A Steganalysis Method Based on the Distribution of Characters.pdf. In: 8th International Conference on Signal Processing, Beijing, China (2006)Google Scholar
  28. 28.
    Wang, G., Zhang, W.: A steganalysis-based approach to comprehensive identification and characterization of functional regulatory elements. Genome Biology 7(6), R49 (2006); (Epub June 22, 2006)Google Scholar
  29. 29.
    Spillman, R., Janssen, M., Nelson, B., Kepner, M.: Use of a Genetic Algorithm in the Cryptanalysis of Simple Substitution Ciphers. Cryptologia 17(1), 31–44 (1993)CrossRefGoogle Scholar
  30. 30.
    Delman, B.: Genetic Algorithms in Cryptography. Rochester Institute of Technology, Rochester (2004)Google Scholar
  31. 31.
    Hasinoff, S.: Solving Substitution Ciphers. A Technical Report, University of Toronto (2003)Google Scholar
  32. 32.
    Uddin, M.F., Youssef, A.M.: An Artificial Life Technique for the Cryptanalysis of Simple Substitution Ciphers. In: CCECE+CCGEI, May 7-10, pp. 1582–1585. IEEE, Ottawa (2006)Google Scholar
  33. 33.
    Lucks, M.: A Constraint Satisfaction Algorithm for the Automated Decryption of Simple Substitution Ciphers. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 132–144. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  34. 34.
    Hart, G.W.: To decode short Cryptograms. Communications of the ACM 37(9), 102–108 (1994)CrossRefGoogle Scholar
  35. 35.
    Jakobsen, T.: A fast method for cryptanalysis of substitution ciphers. Cryptologia 19(3), 265–274 (1995)CrossRefzbMATHGoogle Scholar
  36. 36.
    Forsyth, W.S., Safavi-Nani, R.: Automated Cryptanalysis of substitution ciphers. Cryptologia 17(4), 407–424 (1993)CrossRefzbMATHGoogle Scholar
  37. 37.
    Peleg, S., Rosenfeld, A.: Breaking Substitution Ciphers Using a Relaxation Algorithm. Communications of the ACM 22(11), 598–605 (1979)CrossRefzbMATHGoogle Scholar
  38. 38.
    Modegi, T.: Watermark Embedding Techniques for DNA Sequences Using Codon Usage Bias Features. In: 16th International Conference on Genome Informatics, Yokohama, Japan (2005)Google Scholar
  39. 39.
    Yampolskiy, R.V., El-Barkouky, A.: Wisdom of artificial crowds algorithm for solving NP-had problems. International Journal of Bio-Inspired Computation 3(6) (2011)Google Scholar
  40. 40.
    Yampolskiy, R.V., Ashby, L.H.: Genetic Algorithm and Wisdom of Artificial Crowds Algorithm Applied to Light Up. In: The 16th International Conference on Computer Games, Louisville, KY, pp. 27–32 (2011)Google Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2013

Authors and Affiliations

  • Marc B. Beck
    • 1
  • Eric C. Rouchka
    • 1
  • Roman V. Yampolskiy
    • 1
  1. 1.Cybersecurity Lab, Department of Computer Engineering and Computer Science, Speed School of EngineeringUniversity of LouisvilleLouisvilleUSA

Personalised recommendations