Advertisement

Modular, Multimodal Arm Control Models

  • Stephan Ehrenfeld
  • Oliver Herbort
  • Martin V. ButzEmail author
Chapter

Abstract

Human and animal behavior can be amazingly flexible and adaptive. Even when only considering the dexterity of human arm movements, a rather complex control architecture appears necessary. This control architecture faces three particular challenges, which we discuss in detail. First, sensory redundancy requires the flexible consideration, combination, and integration of different sources of information about the state of the arm and the surrounding environment. Second, motor redundancy requires the flexible consideration and resolution of behavioral alternatives. Third, the continuous uncertainty about body and environment requires flexible control strategies that take these uncertainties into account. Research in cognitive modeling as well as in psychology and neuroscience suggests that the human control system effectively solves and even partially exploits these challenges to generate the observable dexterity. Besides theoretical considerations from control and cognitive modeling perspectives, we survey the capabilities and current drawbacks of the sensorimotor redundancy resolving architecture (SURE_REACH) of human arm reaching. Moreover, we consider an even more modular model of human motor control, which is currently being developed. Both architectures can yield the dexterous behavioral control observable in humans, but only the latter scales to many degrees of freedom. Thus, the architectures may provide insights on how dexterous motor control is realized in humans and on how more adaptive and flexible robot control systems may be developed in the future.

Keywords

Body State Motor Control Motor Command Sensory Feedback Posture Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adamovich, S. V., Levin, M. F., Feldman, A. G. (1997). Central modifications of reflex parameters may underlie the fastest arm movements. Neurophysiology, 77(3), 1460–1469.Google Scholar
  2. Barsalou, L. W., Breazeal, C., Smith, L. B. (2007). Cognition as coordinated non-cognition. Cognitive Processing, 8(1), 79–91. doi:10.1007/s10339-007-0163-1.CrossRefGoogle Scholar
  3. Battaglia-Mayer, A., Caminiti, R., Lacquaniti, F., Zago, M. (2003). Multiple levels of representation of reaching in the parieto-frontal network. Cerebral Cortex, 13(10), 1009.CrossRefGoogle Scholar
  4. Bernier, P. M., Gauthier, G. M., Blouin, J. (2007). Evidence for distinct, differentially adaptable sensorimotor transformations for reaches to visual and proprioceptive targets. Journal of Neurophysiology, 98(3), 1815.CrossRefGoogle Scholar
  5. Bernstein, N. A. (1967). The co-ordination and regulation of movements. Oxford: Pergamon.Google Scholar
  6. Birbaumer, N., & Schmidt, R. (1996). Biologische Psychologie [Biological Psychology], 3rd edn. Berlin: Springer.Google Scholar
  7. Bizzi, E., Polit, A., Morasso, P. (1976). Mechanisms underlying achievement of final head position. Journal of Neurophysiology, 39(2), 435–444.Google Scholar
  8. Botvinick, M., & Cohen, J. (1998). Rubber hands ‘feel’ touch that eyes see. Nature, 391, 756.CrossRefGoogle Scholar
  9. Buneo, C., Jarvis, M., Batista, A., Andersen, R. (2002). Direct visuomotor transformations for reaching. Nature, 416(6881), 632–636.CrossRefGoogle Scholar
  10. Butz, M. V., Herbort, O., Hoffmann, J. (2007). Exploiting redundancy for flexible behavior: unsupervised learning in a modular sensorimotor control architecture. Psychological Review, 114, 1015–1046.CrossRefGoogle Scholar
  11. Butz, M. V., & Pedersen, G. K. M. (2009). The scared robot: motivations in a simulated robot arm. 32nd Annual Conference on Artificial Intelligence, KI 2009, 460–467.Google Scholar
  12. Caggiano, V., Fogassi, L., Rizzolatti, G., Thier, P., Casile, A. (2009). Mirror neurons differentially encode the peripersonal and extrapersonal space of monkeys. Science, 324, 403–406.CrossRefGoogle Scholar
  13. Calinon, S., & Billard, A. (2009). Statistical learning by imitation of competing constraints in joint space and task space. Advanced Robotics, 23(15), 2059–2076.CrossRefGoogle Scholar
  14. Cruse, H. (2003). The evolution of cognition—a hypothesis. Cognitve Science, 27, 135–155.Google Scholar
  15. de Vignemont, F., Majid, A., Jola, C., Haggard, P. (2009). Segmenting the body into parts: evidence from biases in tactile perception. The Quarterly Journal of Experimental Psychology, 62(3), 500–512.CrossRefGoogle Scholar
  16. Doya, K. (1999). What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Networks, 12(7–8), 961–974.CrossRefGoogle Scholar
  17. Doya, K., Ishii, S., Pouget, A., Rao, R. P. N. (2007). Bayesian brain: probabilistic approaches to neural coding. Cambridge: MIT.Google Scholar
  18. Ehrenfeld, S., & Butz, M. V. (2011). A modular, redundant, multi-frame of reference representation for kinematic chains. In IEEE International Conference on Robotics and Automation (pp. 141–147).Google Scholar
  19. Ehrenfeld, S., & Butz, M. V. (2013). The modular modality frame model: continuous body state estimation and plausibility-weighted information fusion. Biological Cybernetics, 107, 61–82. doi:10.1007/s00422-012-0526-2.MathSciNetCrossRefzbMATHGoogle Scholar
  20. Elsner, B., & Hommel, B. (2001). Effect anticipation and action control. Journal of Experimental Psychology: Human Perception and Performance, 27, 229–240.CrossRefGoogle Scholar
  21. Engelbrecht, S. E. (2001). Minimum principles in motor control. Journal of Mathematical Psychology, 45, 497–542.MathSciNetCrossRefzbMATHGoogle Scholar
  22. Feldman, A. G. (1966). Functional tuning of nervous system with control of movement or maintenance of a steady posture. II. Controlable parameters of the muscle. Biophysics, 11, 565–578.Google Scholar
  23. Feldman, A. G., & Levin, M. F. (1995). Positional frames of reference in motor control: origin and use. Behavioral and Brain Sciences, 18, 723–806.CrossRefGoogle Scholar
  24. Fischer, M. H., Rosenbau, D. A., Vaughan, J. (1997). Speed and sequential effects in reaching. Journal of Experimental Psychology: Human Perception and Performance, 23(2), 404–428.CrossRefGoogle Scholar
  25. Fitts, P. M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental PSychology, 74, 381–391.CrossRefGoogle Scholar
  26. Flash, T., & Hogan, N. (1985). The coordination of arm movements: an experimentally confirmed mathematical model. The Journal of Neuroscience, 5(7), 1688–1703.Google Scholar
  27. Gallese, V., & Goldman, A. (1998). Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Sciences, 2, 493–501.CrossRefGoogle Scholar
  28. Gentner, R., & Classen, J. (2006). Modular organization of finger movements by the human central nervous system. Neuron, 52, 731–42.CrossRefGoogle Scholar
  29. Graziano, M. S. A. (2006). The organization of behavioral repertoire in motor cortex. Annual Review of Neuroscience, 29, 105–134.CrossRefGoogle Scholar
  30. Graziano, M. S. A., & Cooke, D. F. (2006). Parieto-frontal interactions, personal space, and defensive behavior. Neuropsychologia, 44, 845–859.CrossRefGoogle Scholar
  31. Greenwald, A. (1970). Sensory feedback mechanisms in performance control: with special reference to the ideo-motor mechanism. Psychological Review, 77, 73–99.CrossRefGoogle Scholar
  32. Harris, C. M., & Wolpert, D. M. (1998). Signal-dependent noise determines motor planning. Nature, 394, 780–784.CrossRefGoogle Scholar
  33. Haruno, M., Wolpert, D., Kawato, M. (2003). Hierarchical mosaic for movement generation. In International Congress Series (vol. 1250, pp. 575–590). Amsterdam: Elsevier.Google Scholar
  34. Herbort, O., & Butz, M. V. (2007). Encoding complete body models enables task dependent optimal behavior. In Proceedings of International Joint Conference on Neural Networks, Orlando, Florida, USA, 12–17 August 2007 (pp. 1424–1429).Google Scholar
  35. Herbort, O., & Butz, M. V. (2010). Planning and control of hand orientation in grasping movements. Experimental Brain Research, 202, 867–878.CrossRefGoogle Scholar
  36. Herbort, O., & Butz, M. V. (2012). The continuous end-state comfort effect: weighted integration of multiple biases. Psychological research, 76, 345–363. doi:10.1007/s00426-011-0334-7.CrossRefGoogle Scholar
  37. Herbort, O., & Butz, M. V. (2011). Habitual and goal-directed factors in (everyday) object handling. Experimental Brain Research, 213, 371–382. doi:10.1007/s00221-011-2787-8.CrossRefGoogle Scholar
  38. Herbort, O., Butz, M. V., Hoffmann, J. (2008). Multimodal goal representations and feedback in hierarchical motor control. In Proceedings of the International Conference on Cognitive Systems 2008. Google Scholar
  39. Herbort, O., Butz, M. V., Pedersen, G. K. M. (2010). The SURE_REACH model for motor learning and control of a redundant arm: from modeling human behavior to applications in robotics. In O. Sigaud & J. Peters (Eds.), From motor learning to interaction learning in robots (pp. 85–106). Berlin: Springer.CrossRefGoogle Scholar
  40. Herbort, O., Ognibene, D., Butz, M. V., Baldassarre, G. (2007). Learning to select targets within targets in reaching tasks. In 6th IEEE international conference on development and learning, ICDL 2007 (pp. 7–12).Google Scholar
  41. Hof, A. L. (2003). Muscle mechanics and neuromuscular control. Journal of Biomechanics, 36, 1031–1038.CrossRefGoogle Scholar
  42. Hoffmann, H., & Möller, R. (2003). Unsupervised learning of a kinematic arm model. In O. Kaynak, E. Alpaydin, E. Oja, L. Xu (Eds.), Artificial neural networks and neural information processing—ICANN/ICONIP 2003. LNCS (vol. 2714, pp. 463–470). Berlin: Springer.Google Scholar
  43. Hoffmann, J. (1993). Vorhersage und Erkenntnis: Die Funktion von Antizipationen in der menschlichen Verhaltenssteuerung und Wahrnehmung. [Anticipation and cognition: The function of anticipations in human behavioral control and perception.]. Göttingen: Hogrefe.Google Scholar
  44. Hoffmann, J., Berner, M., Butz, M. V., Herbort, O., Kiesel, A., Kunde, W., Lenhard, A. (2007a). Explorations of anticipatory behavioral control (ABC): a report from the cognitive psychology unit of the University of Würzburg. Cognitive Processing, 8, 133–142.CrossRefGoogle Scholar
  45. Hoffmann, J., Butz, M., Herbort, O., Kiesel, A., Lenhard, A. (2007b). Spekulationen zur strukturideo-motorischer beziehungen. Zeitschrift für Sportpsychologie, 14(3), 95–103.CrossRefGoogle Scholar
  46. Hoffmann, M., Marques, H., Arieta, A., Sumioka, H., Lungarella, M., Pfeifer, R. (2010). Body schema in robotics: a review. IEEE Transactions on Autonomous Mental Development, 2, 304 – 324.CrossRefGoogle Scholar
  47. Imamizu, H., Kuroda, T., Miyauchi, S., Yoshioka, T., Kawato, M. (2003). Modular organization of internal models of tools in the human cerebellum. PNAS, 100(9), 5461–5466.CrossRefGoogle Scholar
  48. Jacob, P., & Jeannerod, M. (2005). The motor theory of social cognition: a critique. Trends in Cognitive Sciences, 9(1), 21–25.CrossRefGoogle Scholar
  49. Keysers, C., & Gazzola, V. (2007). Integrating simulation and theory of mind: from self to social cogniton. Trends in Cognitive Sciences, 11(5), 194–196.CrossRefGoogle Scholar
  50. Knill, D. C., & Pouget, A. (2004). The bayesian brain: the role of uncertainty in neural coding and computation. Trends in Neurosciences, 27(12), 712–719.CrossRefGoogle Scholar
  51. Koechlin, E., & Summerfield, C. (2007). An information theoretical approach to prefrontal executive function. Trends in cognitive sciences, 11, 229–235. doi:http://dx.doi.org/10.1016/j.tics.2007.04.005.
  52. Konczak, J., & Dichgans, J. (1997). The development toward stereotypic arm kinematics during reaching in the first 3 years of life. Experimental Brain Research, 117, 346–354.CrossRefGoogle Scholar
  53. Körding, K. P., pi Ku, S., Wolpert, D. M. (2004). Bayesian integration in force estimation. Journal of Neurophysiology, 92, 3161–3165.Google Scholar
  54. Körding, K. P., & Wolpert, D. M. (2004). Bayesian integration in sensorimotor learning. Nature, 427, 244–247.CrossRefGoogle Scholar
  55. Körding, K. P., & Wolpert, D. M. (2006). Bayesian decision theory in sensorimotor control. Trends in Cognitive Sciences, 10(7), 319–326. Special issue: Probabilistic models of cognition.Google Scholar
  56. Latash, M. L., Scholz, J. P., Schöner, G. (2007). Toward a new theory of motor synergies. Motor Control, 11, 276–308.Google Scholar
  57. Latash, M. L., & Turvey, M. T. (Eds.), (1996). Dexterity and its development. Hove: Psychology.Google Scholar
  58. Loeb, G. E., Brown, I. E., Cheng, E. J. (1999). A hierarchical foundation for models of sensorimotor control. Experimental Brain Research, 126, 1–18.CrossRefGoogle Scholar
  59. Mussa-Ivaldi, F. A., & Bizzi, E. (2000). Motor learning through the combination of primitives. Philosophical Transactions of the Royal Society: Biological Sciences, 355, 1755–1769.CrossRefGoogle Scholar
  60. Mussa-Ivaldi, F. A., Giszter, S. F., Bizzi, E. (1994). Linear combinations of primitives in vertebrate motor control. Proceedings of the National Academy of Sciences, 91, 7534–7538.CrossRefGoogle Scholar
  61. Nozaki, D., Kurtzer, I., Scott, S. H. (2006). Limited transfer of learning between unimanual and bimanual skills within the same limb. Nature Neuroscience, 9(10), 1–3. Retrived October 11, 2006 from http://www.nature.com/neuro/journal/vaop/ncurrent/pdf/nn1785.pdf.
  62. Polit, A., & Bizzi, E. (1979). Characteristics of motor programs underlying arm movements in monkeys. Journal of Neurophysiol, 42, 183–194.Google Scholar
  63. Pouget, A., & Snyder, L. H. (2000). Computational approaches to sensorimotor transformations. Nature Neuroscience, 3, 1192–1198.CrossRefGoogle Scholar
  64. Rieser, J., Pick Jr, H., Ashmead, D., Garing, A. (1995). Calibration of human locomotion and models of perceptual-motor organization. Journal of Experimental Psychology, 21(3), 480–497.Google Scholar
  65. Rosenbaum, D. A. (2008). Reaching while walking: reaching distance costs more than walking distance. Psychonomic Bulletin and Review, 15(6), 1100–1104.CrossRefGoogle Scholar
  66. Rosenbaum, D. A., Inhoff, A. W., Gordon, A. M. (1984). Choosing between movement sequences: a hierarchical editor models. Journal of Experimental Psychology: General, 113(3), 372–393.CrossRefGoogle Scholar
  67. Rosenbaum, D. A., Kenny, S. B., Derr, M. A. (1983). Hierarchical control of rapid movement sequences. Journal of Experimental Psychology: Human Perception and Performance, 9(1), 86–102.CrossRefGoogle Scholar
  68. Rosenbaum, D. A., Loukopoulos, L. D., Meulenbroek, R. G. J., Vaughan, J., Engelbrecht, S. E. (1995). Planning reaches by evaluating stored postures. Psychological Review, 102(1), 28–67.CrossRefGoogle Scholar
  69. Rosenbaum, D. A., Marchak, F., Barnes, H. J., than Vaughan, J., Siotta, J. D., and Jorgensen, M. J. (1990). Constraints for action selection: overhand versus underhand grips. In M. Jeannerod (Ed.), Attention and performance (vol. XIII, pp. 321–345). Hillsdale, New Jersey, Hove and London: Lawrence Erlbaum Associates.Google Scholar
  70. Rosenbaum, D. A., Slotta, J. D., Vaughan, J., Plamondon, R. (1991). Optimal movement selection. Psychological Science, 2, 86–91.CrossRefGoogle Scholar
  71. Rosenbaum, D. A., van Heugten, C. M., Caldwell, G. E. (1996). From cognition to biomechanics and back: The end-state comfort effect and the middle-is-faster effect. Acta Psychologica, 94, 59–85.CrossRefGoogle Scholar
  72. Roy, D., yuh Hsiao, K., Mavridis, N., Gorniak, P. (2006). Ripley, hand me the cup: sensorimotor representations for grounding word meaning. In International Conference of Automatic Speech Recognition and Understanding.Google Scholar
  73. Sarlegna, F. (2007). Influence of feedback modality on sensorimotor adaptation: Contribution of visual, kinesthetic, and verbal cues. Journal of Motor Behavior, 39(4), 247–258.CrossRefGoogle Scholar
  74. Saxe, R. (2005). Against simulation: the argument from error. Trends in Cognitive Sciences, 9(4), 174–179.CrossRefGoogle Scholar
  75. Schack, T., & Mechsner, F. (2006). Representation of motor skills in human long-term memory. Neuroscience Letters, 391, 77–81.CrossRefGoogle Scholar
  76. Schubotz, R. I. (2007). Prediction of external events with our motor system: towards a new framework. Trends in Cognitive Sciences, 11, 211–218.CrossRefGoogle Scholar
  77. Schwartz, A. B., Moran, D. W., Reina, G. A. (2004). Differential representation of perception and action in the frontal cortex. Science, 303, 380–383.CrossRefGoogle Scholar
  78. Serwe, S., Drewing, K., Trommershuser, J. (2009). Combination of noisy directional visual and proprioceptive information. Journal of Vision, 9, 1–14.CrossRefGoogle Scholar
  79. Shadmehr, R., & Krakauer, J. W. (2008). A computational neuroanatomy for motor control. Experimental Brain Research, 185(3), 359–381.CrossRefGoogle Scholar
  80. Shadmehr, R., & Wise, S. P. (2005). The Computational Neurobiology of Reaching and Pointing: A foundation for motor learning. Cambridge: MIT.Google Scholar
  81. Soechting, J. F., Buneo, C. A., Herrmann, U., Flanders, M. (1995). Moving effortlessly in three dimensions: does Donders’ law apply to arm movement? Journal of Neuroscience, 15, 6271–6280.Google Scholar
  82. Tong, C., & Flanagan, J. R. (2003). Task-specific internal models for kinematic transformations. Journal of Neurophysiology, 90, 578–585.CrossRefGoogle Scholar
  83. Trommershäuser, J., Maloney, L. T., Landy, M. S. (2003). Statistical decision theory and the selection of rapid, goal-directed movements. Journal of the Optical Society of America A, 20, 1419–1433.CrossRefGoogle Scholar
  84. van Beers, R., Haggard, P., Wolpert, D. (2004). The role of execution noise in movement variability. Journal of Neurophysiology, 91(2), 1050.CrossRefGoogle Scholar
  85. Van Hedel, H. J. A., Biedermann, M., Erni, T., Dietz, V. (2002). Obstacle avoidance during human walking: transfer of motor skill from one leg to the other. The Journal of Physiology, 543(2), 709.CrossRefGoogle Scholar
  86. Vijayakumar, S., Toussaint, M., Petkos, G., Howard, M. (2009). Planning and moving in dynamic environments. In B. Sendhoff, E. Körner, O. Sporns, H. Ritter, & K. Doya, Creating Brain-Like Intelligence. Lecture Notes in Computer Science (Vol. 5436, pp. 151–191). Berlin: Springer. doi:10.1007/978-3-642-00616-6_9.Google Scholar
  87. von Hofsten, C. (1980). Predictive reaching for moving objects by human infants* 1. Journal of Experimental Child Psychology, 30(3), 369–382.CrossRefGoogle Scholar
  88. von Holst, E., & Mittelstaedt, H. (1950). Das Reafferenzprinzip. Naturwissenschaften, 37, 464–476.CrossRefGoogle Scholar
  89. Welch, G., & Bishop, G. (1995). An introduction to the Kalman filter. Technical Report TR 95-041, University of North Carolina at Chapel Hill, Department of Computer Science.Google Scholar
  90. Wells, J., Hyler-Both, D., Danley, T., Wallace, G. (2002). Biomechanics of growth and development in the healthy human infant: a pilot study. JAOA: Journal of the American Osteopathic Association, 102(6), 313.Google Scholar
  91. Wolpert, D. M., Doya, K., Kawato, M. (2003). A unifying computational framework for motor control and social interaction. Philosophical Transactions of the Royal Society of London, 358, 593–602.CrossRefGoogle Scholar
  92. Wolpert, D. M., & Ghahramani, Z. (2000). Computational principles of movement neuroscience. Nature Neuroscience, 3, 1212–1217.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Stephan Ehrenfeld
    • 1
  • Oliver Herbort
    • 2
  • Martin V. Butz
    • 1
    Email author
  1. 1.Cognitive ModelingUniversity of TübingenTübingenGermany
  2. 2.Department of PsychologyUniversity of WürzburgWürzburgGermany

Personalised recommendations