Advertisement

The Vivification Problem in Real-Time Business Intelligence: A Vision

  • Patricia C. Arocena
  • Renée J. Miller
  • John Mylopoulos
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 154)

Abstract

In the new era of Business Intelligence (BI) technology, transforming massive amounts of data into high-quality business information is essential. To achieve this, two non-overlapping worlds need to be aligned: the Information Technology (IT) world, represented by an organization’s operational data sources and the technologies that manage them (data warehouses, schemas, queries, ...), and the business world, portrayed by business plans, strategies and goals that an organization aspires to fulfill. Alignment in this context means mapping business queries into BI queries, and interpreting the data retrieved from the BI query in business terms. We call the creation of this interpretation the vivification problem. The main thesis of this position paper is that solutions to the vivification problem should be based on a formal framework that explicates assumptions and the other ingredients (schemas, queries, etc.) that affect it. Also, that there should be a correctness condition that explicates when a response to a business schema query is correct. The paper defines the vivification problem in detail and sketches approaches towards a solution.

Keywords

data exchange vivification incompleteness uncertainty business intelligence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Understanding Emergency Wait Times: Who is Using Emergency Departments and How Long are They Waiting. Canadian Institute for Health Information (2005)Google Scholar
  2. 2.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)Google Scholar
  3. 3.
    Abiteboul, S., Kanellakis, P.C., Grahne, G.: On the Representation and Querying of Sets of Possible Worlds. Theor. Comput. Sci. 78(1), 158–187 (1991)MathSciNetGoogle Scholar
  4. 4.
    An, Y., Borgida, A., Miller, R.J., Mylopoulos, J.: A Semantic Approach to Discovering Schema Mapping Expressions. In: ICDE, pp. 206–215 (2007)Google Scholar
  5. 5.
    Arocena, P.C., Miller, R.J., Mylopoulos, J.: Vivification in Business Intelligence. In: Ng, R.T. (ed.) Perspectives on Business Intelligence. Synthesis Lectures on Data Management, vol. 5(1), pp. 33–52. Morgan & Claypool (2013)Google Scholar
  6. 6.
    Azvine, B., Cui, Z., Nauck, D., Majeed, B.A.: Real-Time Business Intelligence for the Adaptive Enterprise. In: IEEE CEC/EEE (2006)Google Scholar
  7. 7.
    Barone, D., Topaloglou, T., Mylopoulos, J.: Business Intelligence Modeling in Action: A Hospital Case Study. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 502–517. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Bleiholder, J., Naumann, F.: Data Fusion. ACM Comput. Surveys 41(1) (2008)Google Scholar
  9. 9.
    Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate Record Detection: A Survey. IEEE Trans. Knowl. Data Eng. 19(1), 1–16 (2007)CrossRefGoogle Scholar
  10. 10.
    Fagin, R., Haas, L.M., Hernández, M., Miller, R.J., Popa, L., Velegrakis, Y.: Clio: Schema Mapping Creation and Data Exchange. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Conceptual Modeling: Foundations and Applications. LNCS, vol. 5600, pp. 198–236. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data Exchange: Semantics and Query Answering. Theor. Computer Science 336(1), 89–124 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Jiang, L., Barone, D., Amyot, D., Mylopoulos, J.: Strategic Models for Business Intelligence. In: Jeusfeld, M., Delcambre, L., Ling, T.-W. (eds.) ER 2011. LNCS, vol. 6998, pp. 429–439. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Levesque, H.J.: Making Believers out of Computers. Artif. Intell. 30(1), 81–108 (1986)CrossRefGoogle Scholar
  14. 14.
    Libkin, L.: Data exchange and Incomplete Information. In: PODS, pp. 60–69 (2006)Google Scholar
  15. 15.
    Marnette, B., Mecca, G., Papotti, P., Raunich, S., Santoro, D.: ++Spicy: an OpenSource Tool for Second-Generation Schema Mapping and Data Exchange. PVLDB 4(12), 1438–1441 (2011)Google Scholar
  16. 16.
    Naumann, F.: Quality-Driven Query Answering. LNCS, vol. 2261. Springer, Heidelberg (2002)zbMATHCrossRefGoogle Scholar
  17. 17.
    Popa, L., Velegrakis, Y., Miller, R.J., Hernández, M.A., Fagin, R.: Translating Web Data. In: VLDB, pp. 598–609 (2002)Google Scholar
  18. 18.
    Sengupta, K., Krisnadhi, A.A., Hitzler, P.: Local Closed World Semantics: Grounded Circumscription for OWL. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 617–632. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Sismanis, Y., Wang, L., Fuxman, A., Haas, P.J., Reinwald, B.: Resolution-Aware Query Answering for Business Intelligence. In: ICDE, pp. 976–987 (2009)Google Scholar
  20. 20.
    van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhancement of Business Processes. Springer (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Patricia C. Arocena
    • 1
  • Renée J. Miller
    • 1
  • John Mylopoulos
    • 1
  1. 1.University of TorontoTorontoCanada

Personalised recommendations