Abstract
Currently, multiple data vendors utilize the cloud-computing paradigm for trading raw data, associated analytical services, and analytic results as a commodity good. We observe that these vendors often move the functionality of data warehouses to cloud-based platforms. On such platforms, vendors provide services for integrating and analyzing data from public and commercial data sources. We present insights from interviews with seven established vendors about their key challenges with regard to pricing strategies in different market situations and derive associated research problems for the business intelligence community.
Keywords
- Price Strategy
- Data Warehouse
- Data Market
- Data Provider
- Market Situation
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Alexandrov, A., Battré, D., Ewen, S., Heimel, M., Hueske, F., Kao, O., Markl, V., Nijkamp, E., Warneke, D.: Massively parallel data analysis with pacts on nephele. PVLDB 3(2), 1625–1628 (2010)
Balazinska, M., Howe, B., Suciu, D.: Data markets in the cloud: An opportunity for the database community. PVLDB 4(12), 1482–1485 (2011)
Battré, D., Ewen, S., Hueske, F., Kao, O., Markl, V., Warneke, D.: Nephele/pacts: a programming model and execution framework for web-scale analytical processing. In: SoCC, pp. 119–130 (2010)
Beyer, K.S., Ercegovac, V., Gemulla, R., Balmin, A., Eltabakh, M.Y., Kanne, C.-C., Özcan, F., Shekita, E.J.: Jaql: A scripting language for large scale semistructured data analysis. PVLDB 4(12), 1272–1283 (2011)
Bhargava, H.K., Sundaresan, S.: Contingency pricing for information goods and services under industrywide performance standard. J. Manage. Inf. Syst. 20(2), 113–136 (2003)
Bleiholder, J., Naumann, F.: Data fusion. ACM Comput. Surv. 41(1) (2008)
Boden, C., Löser, A., Nagel, C., Pieper, S.: Factcrawl: A fact retrieval framework for full-text indices. In: WebDB (2011)
Bryman, A., Bell, E.: Business Research Methods. Oxford University Press (2007)
Corbin, J.M., Strauss, A.L.: Basics of qualitative research: techniques and procedures for developing grounded theory. Sage Publications, Inc. (2008)
Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. In: Proceedings of the 6th conference on Symposium on Opearting Systems Design & Implementation, OSDI 2004, vol. 6, p. 10. USENIX Association, Berkeley (2004)
Doan, A., Ramakrishnan, R., Vaithyanathan, S.: Managing information extraction: state of the art and research directions. In: SIGMOD Conference, pp. 799–800 (2006)
Galhardas, H., Florescu, D., Shasha, D., Simon, E., Saita, C.-A.: Declarative data cleaning: Language, model, and algorithms. In: VLDB, pp. 371–380 (2001)
Ipeirotis, P.G., Agichtein, E., Jain, P., Gravano, L.: To search or to crawl?: towards a query optimizer for text-centric tasks. In: SIGMOD Conference, pp. 265–276 (2006)
Kantere, V., Dash, D., Gratsias, G., Ailamaki, A.: Predicting cost amortization for query services. In: SIGMOD Conference, pp. 325–336 (2011)
Kushal, A., Moorthy, S., Kumar, V.: Pricing for data markets
Kvale, S., Brinkmann, S.: InterViews: Learning the Craft of Qualitative Research Interviewing. Sage Publications (2008)
Löser, A., Arnold, S., Fiehn, T.: The goolap fact retrieval framework. In: Aufaure, M.-A., Zimányi, E. (eds.) eBISS 2011. LNBIP, vol. 96, pp. 84–97. Springer, Heidelberg (2012)
Marchionini, G.: Exploratory search: from finding to understanding. Commun. ACM 49(4), 41–46 (2006)
Myers, M.D.: Qualitative Research in Business & Management. Sage (2008)
Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig latin: a not-so-foreign language for data processing. In: SIGMOD Conference, pp. 1099–1110 (2008)
Püschel, T., Neumann, D.: Management of cloud infastructures: Policy-based revenue optimization. In: Nunamaker Jr., J.F., Currie, W.L. (eds.) ICIS, p. 178. Association for Information Systems (2009)
Rowstron, A., Narayanan, D., Donnelly, A., O’Shea, G., Douglas, A.: Nobody ever got fired for using hadoop on a cluster. In: HotCDP 2012 - 1st International Workshop on Hot Topics in Cloud Data Processing (2012)
Simmen, D.E., Altinel, M., Markl, V., Padmanabhan, S., Singh, A.: Damia: data mashups for intranet applications. In: SIGMOD Conference (2008)
Upadhyaya, P., Balazinska, M., Suciu, D.: How to price shared optimizations in the cloud. Proc. VLDB Endow. 5(6), 562–573 (2012)
Wu, S.Y., Banker, R.D.: Best pricing strategy for information services. J. AIS 11(6) (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Muschalle, A., Stahl, F., Löser, A., Vossen, G. (2013). Pricing Approaches for Data Markets. In: Castellanos, M., Dayal, U., Rundensteiner, E.A. (eds) Enabling Real-Time Business Intelligence. BIRTE 2012. Lecture Notes in Business Information Processing, vol 154. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39872-8_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-39872-8_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39871-1
Online ISBN: 978-3-642-39872-8
eBook Packages: Computer ScienceComputer Science (R0)