Advertisement

Real-Time Business Intelligence in the MIRABEL Smart Grid System

  • Ulrike Fischer
  • Dalia Kaulakienė
  • Mohamed E. Khalefa
  • Wolfgang Lehner
  • Torben Bach Pedersen
  • Laurynas Šikšnys
  • Christian Thomsen
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 154)

Abstract

The so-called smart grid is emerging in the energy domain as a solution to provide a stable, efficient and sustainable energy supply accommodating ever growing amounts of renewable energy like wind and solar in the energy production. Smart grid systems are highly distributed, manage large amounts of energy related data, and must be able to react rapidly (but intelligently) when conditions change, leading to substantial real-time business intelligence challenges. This paper discusses these challenges and presents data management solutions in the European smart grid project MIRABEL. These solutions include real-time time series forecasting, real-time aggregation of the flexibilities in energy supply and demand, managing subscriptions for forecasted and flexibility data, efficient storage of time series and flexibilities, and real-time analytical query processing spanning past and future (forecasted) data. Experimental studies show that the proposed solutions support important real-time business intelligence tasks in a smart grid system.

Keywords

BI over streaming data real-time decision support tuning and management of the real-time data warehouse smart grids renewable energy flexibility defining data forecasting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The MIRABEL Project (2012), www.mirabel-project.eu/
  2. 2.
    ETSO, The harmonized electricity market role model (2009), https://www.entsoe.eu/fileadmin/user_upload/edi/library/role/role-model-v2009-01.pdf
  3. 3.
    Tušar, T., Šikšnys, L., Pedersen, T.B., Dovgan, E., Filipič, B.: Using aggregation to improve the scheduling of flexible energy offers. In: Proc. of BIOMA (2012)Google Scholar
  4. 4.
    Šikšnys, L., Thomsen, C., Pedersen, T.B.: MIRABEL DW: Managing Complex Energy Data in a Smart Grid. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2012. LNCS, vol. 7448, pp. 443–457. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Thiagarajan, A., Madden, S.: Querying continuous functions in a database system. In: Proc. of SIGMOD, pp. 791–804 (2008)Google Scholar
  6. 6.
    Shatkay, H., Zdonik, S.B.: Approximate queries and representations for large data sequences. In: Proc. of ICDE, pp. 536–545 (1996)Google Scholar
  7. 7.
    Khalefa, M.E., Fischer, U., Pedersen, T.B.: Model-based Integration of Past & Future in TimeTravel (demo). In: PVLDB (2012)Google Scholar
  8. 8.
    Thomsen, C., Pedersen, T.B., Lehner, W.: RiTE: Providing On-Demand Data for Right-Time Data Warehousing. In: Proc. of ICDE, pp. 456–465 (2008)Google Scholar
  9. 9.
    Šikšnys, L., Khalefa, M.E., Pedersen, T.B.: Aggregating and disaggregating flexibility objects. In: Ailamaki, A., Bowers, S. (eds.) SSDBM 2012. LNCS, vol. 7338, pp. 379–396. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1990)Google Scholar
  11. 11.
    Boehm, M., Dannecker, L., Doms, A., Dovgan, E., Filipic, B., Fischer, U., Lehner, W., Pedersen, T.B., Pitarch, Y., Siksnys, L., Tusar, T.: Data management in the mirabel smart grid system. In: Proc. of EnDM (2012)Google Scholar
  12. 12.
    Taylor, J.W.: Triple Seasonal Methods for Short-Term Electricity Demand Forecasting. European Journal of Operational Research (2009)Google Scholar
  13. 13.
    Ramanathan, R., Engle, R., Granger, C.W.J., Vahid-Araghi, F., Brace, C.: Short-run Forecasts of Electricity Loads and Peaks. International Journal of Forecasting 13(2), 161–174 (1997)CrossRefGoogle Scholar
  14. 14.
    Dannecker, L., Böhm, M., Lehner, W., Hackenbroich, G.: Forcasting evolving time series of energy demand and supply. In: Eder, J., Bielikova, M., Tjoa, A.M. (eds.) ADBIS 2011. LNCS, vol. 6909, pp. 302–315. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Dannecker, L., Schulze, R., Böhm, M., Lehner, W., Hackenbroich, G.: Context-aware parameter estimation for forecast models in the energy domain. In: Bayard Cushing, J., French, J., Bowers, S. (eds.) SSDBM 2011. LNCS, vol. 6809, pp. 491–508. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Dannecker, L., Böehm, M., Lehner, W., Hackenbroich, G.: Partitioning and multi-core parallelization of multi-equation forecast models. In: Ailamaki, A., Bowers, S. (eds.) SSDBM 2012. LNCS, vol. 7338, pp. 106–123. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Fischer, U., Boehm, M., Lehner, W.: Offline design tuning for hierarchies of forecast models. In: Proc. of BTW (2011)Google Scholar
  18. 18.
    Fischer, U., Böhm, M., Lehner, W., Pedersen, T.B.: Optimizing notifications of subscription-based forecast queries. In: Ailamaki, A., Bowers, S. (eds.) SSDBM 2012. LNCS, vol. 7338, pp. 449–466. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    NREL, Wind Integration Datasets (2012), http://www.nrel.gov/wind/integrationdatasets/
  20. 20.
  21. 21.
    Konsman, M., Rumph, F.-J.: D2.3. Final data model, specification of request and negotiation messages and contracts (2011), http://wwwdb.inf.tu-dresden.de/miracle/publications/D2.3.pdf
  22. 22.
    Verhoosel, J., Rothengatter, D., Rumph, F.-J., Konsman, M.: D7.5. MIRABEL-ONE: Initial draft of the MIRABEL Standard (2011), http://wwwdb.inf.tu-dresden.de/miracle/publications/D7.5.pdf
  23. 23.
    Wu, E., Diao, Y., Rizvi, S.: High-performance complex event processing over streams. In: Proc. of SIGMOD (2006)Google Scholar
  24. 24.
    Abadi, D., Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Erwin, C., Galvez, E., Hatoun, M., Hwang, J.H., Maskey, A., Rasin, A., Singer, A., Stonebraker, M., Tatbul, N., Xing, Y., Yan, R., Zdonik, S.: Aurora: A data stream management system. In: Proc. of SIGMOD (2003)Google Scholar
  25. 25.
    Kemper, A., Neumann, T.: Hyper: A hybrid oltp & olap main memory database system based on virtual memory snapshots. In: Proc. of ICDE (2011)Google Scholar
  26. 26.
    Thiele, M., Lehner, W.: Evaluation of load scheduling strategies for real-time data warehouse environments. In: Castellanos, M., Dayal, U., Miller, R.J. (eds.) BIRTE 2009. LNBIP, vol. 41, pp. 84–99. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ulrike Fischer
    • 1
  • Dalia Kaulakienė
    • 2
  • Mohamed E. Khalefa
    • 2
  • Wolfgang Lehner
    • 1
  • Torben Bach Pedersen
    • 2
  • Laurynas Šikšnys
    • 2
  • Christian Thomsen
    • 2
  1. 1.Dresden University of Technology, Database Technology GroupGermany
  2. 2.Center for Data-Intensive SystemsAalborg UniversityDenmark

Personalised recommendations