Delay and Loss Due to Uplink Packet Scheduling in LTE Network

  • Alia Asheralieva
  • Kaushik Mahata
  • Jamil Y. Khan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8072)


In this paper we describe the packet scheduling process and investigate the reasons limiting the medium access control (MAC) layer capacity of the 3rd Generation Partnership Project Long Term Evolution (3GPP LTE) network. We show that although a scheduling process allows to assign dedicated channels to the users based on their quality of service (QoS) requirements, it introduces the additional delay in the uplink channel. We also show that the scheduling delay may increase significantly if some certain parameters of the system are not set appropriately, and suggest alternative approaches to reduce the scheduling delay in LTE network. Obtained analytical expressions of the packet scheduling delay and loss have been verified using simulation model developed in OPNET platform. Results of this work can be used for resource allocation, packet scheduling and network planning to establish the upper bounds on delay and loss for the users with strict QoS requirements.


3GPP LTE packet scheduling performance evaluation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berardinelli, G., et al.: OFDMA vs. SC-FDMA: Performance comparison in local area IMT-A Scenarios. IEEE Trans. Wireless Commun. 15(5), 64–72 (2008)CrossRefGoogle Scholar
  2. 2.
    Wong, C.Y., et al.: Multiuser OFDM with adaptive subcarrier, bit and power allocation. IEEE J. Select. Areas Commun. 17(10), 1747–1758 (1999)CrossRefGoogle Scholar
  3. 3.
    Kivanc, D., Li, G., Liu, H.: Computationally efficient bandwidth allocation and power control for OFDMA. IEEE Trans. Wireless Commun. 2(6), 1150–1158 (2003)CrossRefGoogle Scholar
  4. 4.
    Ergen, M., Coleri, S., Varaiya, P.: QoS aware adaptive resource allocation techniques for fair scheduling in OFDMA based broadband wireless systems. IEEE Trans. Broad-casting 49(4), 362–370 (2003)CrossRefGoogle Scholar
  5. 5.
    Song, G., Lee, Y.: Cross-layer optimization for OFDM wireless networks–part I-II. IEEE Trans. Wireless Commun. 4(2), 614–634 (2005)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Yin, H., Liu, H.: An efficient multiuser loading algorithm for OFDM based broadband wireless systems. In: Proc. IEEE GLOBECOM (2000)Google Scholar
  7. 7.
    Boussif, M., et al.: Interference Based Power Control Performance in LTE Uplink. In: Proc. IEEE ISWCS, pp. 698–702 (2008)Google Scholar
  8. 8.
    Wang, H., Jiang, D.: Performance Comparison of Control-less Scheduling Policies for VoIP in LTE UL. In: Proc. IEEE WCNC, pp. 2497–2501 (2008)Google Scholar
  9. 9.
    Holma, H., Toskala, A.: LTE for UMTS: Evolution to LTE-Advanced, p. 576. John Wiley and Sons (2011)Google Scholar
  10. 10.
    Larmo, A., et al.: The LTE link-layer design. IEEE Comm. Mag. 47(4), 52–59 (2009)CrossRefGoogle Scholar
  11. 11.
    3GPP TS 25.892. Feasibility Study for Orthogonal Frequency Division Multiplexing (OFDM) for UTRAN enhancement (Release 6) Google Scholar
  12. 12.
    Kela, P., et al.: Dynamic Packet Scheduling Performance in UTRA Long Term Evolution Downlink. In: Proc. IEEE ISWCS (2008)Google Scholar
  13. 13.
    3GPP TS 36.321. E-UTRA; MAC protocol specification (Release 8)Google Scholar
  14. 14.
    3GPP TS 36.211. Physical Channels and Modulation (Release 8)Google Scholar
  15. 15.
    OPNET official site:
  16. 16.
    3GPP TS 26.114. Multimedia Telephony; Media handling and interaction (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alia Asheralieva
    • 1
  • Kaushik Mahata
    • 1
  • Jamil Y. Khan
    • 1
  1. 1.School of Electrical Engineering and Computer ScienceUniversity of NewcastleCallaghanAustralia

Personalised recommendations