Skip to main content

NeuroCopter: Neuromorphic Computation of 6D Ego-Motion of a Quadcopter

  • Conference paper
Biomimetic and Biohybrid Systems (Living Machines 2013)

Abstract

The navigation capabilities of honeybees are surprisingly complex. Experimental evidence suggests that honeybees rely on a map-like neuronal representation of the environment. Intriguingly, a honeybee brain exhibits approximately one million neurons only. In an interdisciplinary enterprise, we are investigating models of high-level processing in the nervous system of insects such as spatial mapping and decision making. We use a robotic platform termed NeuroCopter that is controlled by a set of functional modules. Each of these modules initially represents a conventional control method and, in an iterative process, will be replaced by a neural control architecture. This paper describes the neuromorphic extraction of the copter’s ego motion from sparse optical flow fields. We will first introduce the reader to the system’s architecture and then present a detailed description of the structure of the neural model followed by simulated and real-world results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Teller, M.V.A.: Neural Programming and an Internal Reinforcement Policy

    Google Scholar 

  2. Bernardet, U., Blanchard, M., Verschure, P.F.M.J.: IQR: a distributed system for real-time real-world neuronal simulation. Neurocomputing 44-46(null), 1043–1048 (2002)

    Article  Google Scholar 

  3. Bobrowski, O., Meir, R., Eldar, Y.C.: Bayesian filtering in spiking neural networks: noise, adaptation, and multisensory integration. Neural Computation 21(5), 1277–1320 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Collett, T.S., Collett, M.: Memory use in insect visual navigation. Nature Reviews. Neuroscience 3(7), 542–552 (2002)

    Article  Google Scholar 

  5. Cruse, H., Wehner, R.: No need for a cognitive map: decentralized memory for insect navigation. PLoS Computational Biology 7(3), e1002009 (2011)

    Google Scholar 

  6. Indiveri, G., Linares-Barranco, B., Hamilton, T.J., Van Schaik, A., Etienne-Cummings, R., Delbruck, T., Liu, S.-C., Dudek, P., Häfliger, P., Renaud, S., et al: Neuromorphic silicon neuron circuits. Frontiers in Neuroscience 5 (2011)

    Google Scholar 

  7. Landgraf, T., Wild, B., Ludwig, T., Nowak, P., Helgadottir, B., Daumenlang, L., Breinlinger, P., Nawrot, M., Rojas, R.: Test Flight for Living Machines 2013 (2013)

    Google Scholar 

  8. Lucas, B.D., Kanade, T.: An Iterative Image Registration Technique with an Application to Stereo Vision. Imaging 130(x), 674–679 (1981)

    Google Scholar 

  9. Menzel, R.: The honeybee as a model for understanding the basis of cognition. Nature Reviews Neuroscience 13(11), 758–768 (2012)

    Article  Google Scholar 

  10. Menzel, R., Greggers, U., Smith, A., Berger, S., Brandt, R., Brunke, S., Bundrock, G., Hülse, S., Plümpe, T., Schaupp, F., Schüttler, E., Stach, S., Stindt, J., Stollhoff, N., Watzl, S.: Honey bees navigate according to a map-like spatial memory. Proceedings of the National Academy of Sciences of the United States of America 102(8), 3040–3045 (2005)

    Article  Google Scholar 

  11. Menzel, R., Kirbach, A., Haass, W.-D., Fischer, B., Fuchs, J., Koblofsky, M., Lehmann, K., Reiter, L., Meyer, H., Nguyen, H., et al.: A common frame of reference for learned and communicated vectors in honeybee navigation. Current Biology 21(8), 645–650 (2011)

    Article  Google Scholar 

  12. Menzel, R., Lehmann, K., Manz, G., Fuchs, J., Koblofsky, M., Greggers, U.: Vector integration and novel shortcutting in honeybee navigation. Apidologie 43(3), 229–243 (2012)

    Article  Google Scholar 

  13. Pfeil, T., Grübl, A., Jeltsch, S., Müller, E., Müller, P., Petrovici, M.A., Schmuker, M., Brüderle, D., Schemmel, J., Meier, K.: Six networks on a universal neuromorphic computing substrate. Frontiers in Neuroscience 7 (2013)

    Google Scholar 

  14. Poon, C.-S., Zhou, K.: Neuromorphic silicon neurons and large-scale neural networks: challenges and opportunities. Frontiers in Neuroscience 5, 108 (2011)

    Article  Google Scholar 

  15. Shi, J., Tomasi, C.: Good features to track. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition CVPR 1994, pp. 593–600. IEEE Comput. Soc. Press (1994)

    Google Scholar 

  16. Wehner, R., Srinivasan, M.V.: Path integration in insects (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Landgraf, T. et al. (2013). NeuroCopter: Neuromorphic Computation of 6D Ego-Motion of a Quadcopter. In: Lepora, N.F., Mura, A., Krapp, H.G., Verschure, P.F.M.J., Prescott, T.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2013. Lecture Notes in Computer Science(), vol 8064. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39802-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39802-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39801-8

  • Online ISBN: 978-3-642-39802-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics