Lazy Abstractions for Timed Automata

  • Frédéric Herbreteau
  • B. Srivathsan
  • Igor Walukiewicz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8044)

Abstract

We consider the reachability problem for timed automata. A standard solution to this problem involves computing a search tree whose nodes are abstractions of zones. For efficiency reasons, they are parametrized by the maximal lower and upper bounds (LU-bounds) occurring in the guards of the automaton. We propose an algorithm that dynamically updates LU-bounds during exploration of the search tree. In order to keep them as small as possible, the bounds are refined only when they enable a transition that is impossible in the unabstracted system. So our algorithm can be seen as a kind of lazy CEGAR algorithm for timed automata. We show that on several standard benchmarks, the algorithm is capable of keeping very small LU-bounds, and in consequence is able to reduce the search space substantially.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Dill, D.L.: A theory of timed automata. TCS 126(2), 183–235 (1994)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Alur, R., Itai, A., Kurshan, R.P., Yannakakis, M.: Timing verification by successive approximation. Inf. Comput. 118(1), 142–157 (1995)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Behrmann, G., Bouyer, P., Fleury, E., Larsen, K.G.: Static guard analysis in timed automata verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 254–270. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Behrmann, G., Bouyer, P., Larsen, K.G., Pelanek, R.: Lower and upper bounds in zone-based abstractions of timed automata. Int. Journal on Software Tools for Technology Transfer 8(3), 204–215 (2006)CrossRefGoogle Scholar
  5. 5.
    Behrmann, G., David, A., Larsen, K.G., Haakansson, J., Pettersson, P., Yi, W., Hendriks, M.: Uppaal 4.0. In: QEST, pp. 125–126. IEEE Computer Society (2006)Google Scholar
  6. 6.
    Bengtsson, J.E., Yi, W.: Timed automata: Semantics, algorithms and tools. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Bouyer, P., Laroussinie, F., Reynier, P.-A.: Diagonal constraints in timed automata: Forward analysis of timed systems. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 112–126. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Bozga, M., Maler, O., Tripakis, S.: Efficient verification of timed automata using dense and discrete time semantics. In: Pierre, L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 125–141. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  9. 9.
    Courcoubetis, C., Yannakakis, M.: Minimum and maximum delay problems in real-time systems. Form. Methods Syst. Des. 1(4), 385–415 (1992)CrossRefMATHGoogle Scholar
  10. 10.
    Daws, C., Tripakis, S.: Model checking of real-time reachability properties using abstractions. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 313–329. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  11. 11.
    Dill, D.: Timing assumptions and verification of finite-state concurrent systems. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  12. 12.
    Dill, D.L., Wong-Toi, H.: Verification of real-time systems by successive over and under approximation. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 409–422. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  13. 13.
    Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL, pp. 58–70 (2002)Google Scholar
  14. 14.
    Herbreteau, F., Kini, D., Srivathsan, B., Walukiewicz, I.: Using non-convex approximations for efficient analysis of timed automata. In: FSTTCS. LIPIcs, vol. 13, pp. 78–89 (2011)Google Scholar
  15. 15.
    Herbreteau, F., Srivathsan, B., Walukiewicz, I.: Better abstractions for timed automata. In: LICS, pp. 375–384 (2012)Google Scholar
  16. 16.
    Herbreteau, F., Srivathsan, B., Walukiewicz, I.: Lazy abstractions for timed automata. arXiv:1301.3127, Extended version with proofs (2013)Google Scholar
  17. 17.
    Lugiez, D., Niebert, P., Zennou, S.: A partial order semantics approach to the clock explosion problem of timed automata. TCS 345(1), 27–59 (2005)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Morbé, G., Pigorsch, F., Scholl, C.: Fully symbolic model checking for timed automata. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 616–632. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Sorea, M.: Lazy approximation for dense real-time systems. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS, vol. 3253, pp. 363–378. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Wang, F.: Efficient verification of timed automata with BDD-like data structures. Int. J. Softw. Tools Technol. Transf. 6(1), 77–97 (2004)CrossRefGoogle Scholar
  22. 22.
    Wong-Toi, H.: Symbolic Approximations of Verifying Real-Time Systems. PhD thesis, Stanford University (March 1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Frédéric Herbreteau
    • 1
  • B. Srivathsan
    • 2
  • Igor Walukiewicz
    • 1
  1. 1.CNRS, LaBRI, UMR 5800Univ. BordeauxTalenceFrance
  2. 2.Software Modeling and Verification GroupRWTH Aachen UniversityGermany

Personalised recommendations