Abstract
In this paper we give a short introduction in first-order theorem proving and the use of the theorem prover Vampire. We discuss the superposition calculus and explain the key concepts of saturation and redundancy elimination, present saturation algorithms and preprocessing, and demonstrate how these concepts are implemented in Vampire. Further, we also cover more recent topics and features of Vampire designed for advanced applications, including satisfiability checking, theory reasoning, interpolation, consequence elimination, and program analysis.
This research is partially supported by the FWF projects S11410-N23 and T425-N23, and the WWTF PROSEED grant ICT C-050. This work was partially done while the first author was affiliated with the TU Vienna.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, ch. 2, vol. I, pp. 19–99. Elsevier Science (2001)
Barrett, C., Stump, A., Tinelli, C.: The Satisfiability Modulo Theories Library (SMT-LIB) (2010), http://www.SMT-LIB.org
Baumgartner, P., Fuchs, A., de Nivelle, H., Tinelli, C.: Computing Finite Models by Reduction to Function-Free Clause Logic. J. of Applied Logic 7(1), 58–74 (2009)
Buchberger, B.: An Algorithm for Finding the Basis Elements of the Residue Class Ring of a Zero Dimensional Polynomial Ideal. J. of Symbolic Computation 41(3-4), 475–511 (2006); Phd thesis 1965, University of Innsbruck, Austria
Craig, W.: Three uses of the Herbrand-Gentzen Theorem in Relating Model Theory and Proof Theory. J. of Symbolic Logic 22(3), 269–285 (1957)
Denzinger, J., Kronenburg, M., Schulz, S.: DISCOUNT — A Distributed and Learning Equational Prover. J. of Automated Reasoning 18(2), 189–198 (1997)
Dershowitz, N., Plaisted, D.A.: Rewriting. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, ch. 9, vol. I, pp. 535–610. Elsevier Science (2001)
Ganzinger, H., Korovin, K.: New Directions in Instantiation-Based Theorem Proving. In: Proc. of LICS, pp. 55–64 (2003)
Hoder, K., Kovács, L., Voronkov, A.: Case Studies on Invariant Generation Using a Saturation Theorem Prover. In: Batyrshin, I., Sidorov, G. (eds.) MICAI 2011, Part I. LNCS, vol. 7094, pp. 1–15. Springer, Heidelberg (2011)
Hoder, K., Kovács, L., Voronkov, A.: Invariant Generation in Vampire. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 60–64. Springer, Heidelberg (2011)
Hoder, K., Kovács, L., Voronkov, A.: Playing in the Grey Area of Proofs. In: Proc. of POPL, pp. 259–272 (2012)
Hoder, K., Voronkov, A.: Comparing Unification Algorithms in First-Order Theorem Proving. In: Mertsching, B., Hund, M., Aziz, Z. (eds.) KI 2009. LNCS, vol. 5803, pp. 435–443. Springer, Heidelberg (2009)
Jhala, R., McMillan, K.L.: A Practical and Complete Approach to Predicate Refinement. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 459–473. Springer, Heidelberg (2006)
Knuth, D., Bendix, P.: Simple Word Problems in Universal Algebras. In: Leech, J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press (1970)
Korovin, K., Voronkov, A.: Integrating Linear Arithmetic into Superposition Calculus. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 223–237. Springer, Heidelberg (2007)
Korovin, K., Voronkov, A.: Solving Systems of Linear Inequalities by Bound Propagation. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 369–383. Springer, Heidelberg (2011)
Kovács, L., Moser, G., Voronkov, A.: On Transfinite Knuth-Bendix Orders. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 384–399. Springer, Heidelberg (2011)
Kovács, L., Voronkov, A.: Finding Loop Invariants for Programs over Arrays Using a Theorem Prover. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 470–485. Springer, Heidelberg (2009)
Kovács, L., Voronkov, A.: Interpolation and Symbol Elimination. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 199–213. Springer, Heidelberg (2009)
Kovács, L., Voronkov, A.: Vampire Web Page (2013), http://vprover.org
Löchner, B., Hillenbrand, T.: A Phytography of WALDMEISTER. AI Commun. 15(2-3), 127–133 (2002)
Lusk, E.L.: Controlling Redundancy in Large Search Spaces: Argonne-Style Theorem Proving Through the Years. In: Proc. of LPAR, pp. 96–106 (1992)
Martelli, A., Montanari, U.: An Efficient Unification Algorithm. TOPLAS 4(2), 258–282 (1982)
McCune, W.W.: OTTER 3.0 Reference Manual and Guide. Technical Report ANL-94/6, Argonne National Laboratory (January 1994)
McMillan, K.L.: Interpolation and SAT-Based Model Checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)
Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, ch. 7, vol. I, pp. 371–443. Elsevier Science (2001)
Riazanov, A., Voronkov, A.: Limited resource strategy in resolution theorem proving. Journal of Symbolic Computations 36(1-2), 101–115 (2003)
Robinson, J.A.: A Machine-Oriented Logic Based on the Resolution Principle. J. ACM 12(1), 23–41 (1965)
Schulz, S.: E — a Brainiac Theorem Prover. AI Commun. 15(2-3), 111–126 (2002)
Sekar, R., Ramakrishnan, I.V., Voronkov, A.: Term indexing. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, ch. 26, vol. II, pp. 1853–1964. Elsevier Science (2001)
Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure. J. Autom. Reasoning 43(4), 337–362 (2009)
Sutcliffe, G.: The CADE-23 Automated Theorem Proving System Competition - CASC-23. AI Commun. 25(1), 49–63 (2012)
Sutcliffe, G.: The TPTP Problem Library (2013), http://www.cs.miami.edu/~tptp/
Sutcliffe, G.: The CADE ATP System Competition (2013), http://www.cs.miami.edu/~tptp/CASC/
Weidenbach, C., Gaede, B., Rock, G.: SPASS & FLOTTER. Version 0.42. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 141–145. Springer, Heidelberg (1996)
http://www.complang.tuwien.ac.at/ioan/boundPropagation . Vampire with Bound Propagation
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kovács, L., Voronkov, A. (2013). First-Order Theorem Proving and Vampire . In: Sharygina, N., Veith, H. (eds) Computer Aided Verification. CAV 2013. Lecture Notes in Computer Science, vol 8044. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39799-8_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-39799-8_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39798-1
Online ISBN: 978-3-642-39799-8
eBook Packages: Computer ScienceComputer Science (R0)