Skip to main content

Introduction to Nucleic Acid Polymerases: Families, Themes, and Mechanisms

  • Chapter
  • First Online:
Nucleic Acid Polymerases

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 30))

Abstract

Template-dependent and template-independent nucleotidyl transfer reactions are fundamentally important in the maintenance of the genome as well as for gene expression in all organisms and viruses. These reactions are conserved and involve the condensation of an incoming nucleotide triphosphate at the 3′ hydroxyl of the growing oligonucleotide chain with concomitant release of pyrophosphate. DNA polymerase I (Pol I) isolated from E. coli extracts was initially characterized in in vitro reactions well over 50 years ago by the seminal work of Arthur Kornberg’s laboratory (Kornberg 1957; Lehman et al. 1958; Bessman et al. 1958). Inspired by this work, the discovery of a DNA-dependent RNA polymerase quickly followed in 1960 from a variety of researchers including Samuel Weiss (Weiss and Gladstone 1959), Jerald Hurwitz (Hurwitz et al. 1960), Audrey Stevens (Stevens 1960), and James Bonner (Huang et al. 1960). These early enzymatic characterizations of DNA-dependent deoxyribonucleotides and ribonucleotide incorporations gave credibility both to Watson and Crick’s DNA double helix model (Watson and Crick 1953) and the transcription operon model proposed by François Jacob and Jacques Monod (Jacob and Monod 1961).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CPD:

Cyclobutane pyrimidine dimers

E. coli :

Escherichia coli

FDX:

Fidaxomicin

FILS:

Facial dysmorphism, immunodeficiency, livedo, and short statures

kDa:

Kilodaltons

pol:

Polymerase

Pol I:

E. coli DNA polymerase I

RdRp:

RNA-dependent RNA polymerase

Rif:

Rifampicin

rRNA:

Ribosomal RNA

TLS:

Translesion synthesis

UV:

Ultraviolet light

XPD:

Xeroderma pigmentosum

References

  • Albertella MR, Lau A, O’Connor MJ (2005) The overexpression of specialized DNA polymerases in cancer. DNA Repair (Amst) 4(5):583–593

    Article  CAS  Google Scholar 

  • Allsopp RC, Harley CB (1995) Evidence for a critical telomere length in senescent human fibroblasts. Exp Cell Res 219(1):130–136

    Article  PubMed  CAS  Google Scholar 

  • Armanios M (2009) Syndromes of telomere shortening. Annu Rev Genomics Hum Genet 10:45–61

    Article  PubMed  CAS  Google Scholar 

  • Beese LS, Steitz TA (1991) Structural basis for the 3′-5′ exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. EMBO J 10(1):25–33

    PubMed  CAS  Google Scholar 

  • Beese LS, Derbyshire V, Steitz TA (1993) Structure of DNA polymerase I Klenow fragment bound to duplex DNA. Science 260(5106):352–355

    Article  PubMed  CAS  Google Scholar 

  • Bessman MJ, Lehman IR, Simms ES, Kornberg A (1958) Enzymatic synthesis of deoxyribonucleic acid. II. General properties of the reaction. J Biol Chem 233(1):171–177

    PubMed  CAS  Google Scholar 

  • Bielas JH, Loeb KR, Rubin BP, True LD, Loeb LA (2006) Human cancers express a mutator phenotype. Proc Natl Acad Sci USA 103(48):18238–18242

    Article  PubMed  CAS  Google Scholar 

  • Blanco L, Bernad A, Lazaro JM, Martin G, Garmendia C, Salas M (1989) Highly efficient DNA synthesis by the phage phi 29 DNA polymerase. Symmetrical mode of DNA replication. J Biol Chem 264(15):8935–8940

    PubMed  CAS  Google Scholar 

  • Bloom LB (2009) Loading clamps for DNA replication and repair. DNA Repair (Amst) 8(5):570–578

    Article  CAS  Google Scholar 

  • Braithwaite DK, Ito J (1993) Compilation, alignment, and phylogenetic relationships of DNA polymerases. Nucleic Acids Res 21(4):787–802

    Article  PubMed  CAS  Google Scholar 

  • Burgers PM, Koonin EV, Bruford E, Blanco L, Burtis KC, Christman MF, Copeland WC, Friedberg EC, Hanaoka F, Hinkle DC, Lawrence CW, Nakanishi M, Ohmori H, Prakash L, Prakash S, Reynaud CA, Sugino A, Todo T, Wang Z, Weill JC, Woodgate R (2001) Eukaryotic DNA polymerases: proposal for a revised nomenclature. J Biol Chem 276(47):43487–43490

    Article  PubMed  CAS  Google Scholar 

  • Dahlberg ME, Benkovic SJ (1991) Kinetic mechanism of DNA polymerase I (Klenow fragment): identification of a second conformational change and evaluation of the internal equilibrium constant. Biochemistry 30(20):4835–4843

    Article  PubMed  CAS  Google Scholar 

  • Delucia AM, Chaudhuri S, Potapova O, Grindley ND, Joyce CM (2006) The properties of steric gate mutants reveal different constraints within the active sites of Y-family and A-family DNA polymerases. J Biol Chem 281(37):27286–27291

    Article  PubMed  CAS  Google Scholar 

  • Goellner EM, Svilar D, Almeida KH, Sobol RW (2012) Targeting DNA polymerase as for therapeutic intervention. Curr Mol Pharmacol 5(1):68–87

    PubMed  CAS  Google Scholar 

  • Hirata A, Murakami KS (2009) Archaeal RNA polymerase. Curr Opin Struct Biol 19(6):724–731

    Article  PubMed  CAS  Google Scholar 

  • Huang RC, Maheshwari N, Bonner J (1960) Enzymatic synthesis of RNA. Biochem Biophys Res Com 3(6):689–694

    Article  PubMed  CAS  Google Scholar 

  • Hurwitz J, Bresler A, Diringer R (1960) The enzymic incorporation of ribonucleotides into polyribonucleotides and the effect of DNA. Biochem Biophys Res Com 3(1):15–19

    Article  CAS  Google Scholar 

  • Ishino Y, Komori K, Cann IKO, Koga Y (1998) A novel DNA polymerase family found in Archaea. J Bacteriol 180(8):2232–2236

    PubMed  CAS  Google Scholar 

  • Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356

    Article  PubMed  CAS  Google Scholar 

  • Johnson KA (2010) The kinetic and chemical mechanism of high-fidelity DNA polymerases. Biochim Biophys Acta 1804(5):1041–1048

    Article  PubMed  CAS  Google Scholar 

  • Johnson RE, Washington MT, Prakash S, Prakash L (2000) Fidelity of human DNA polymerase eta. J Biol Chem 275(11):7447–7450

    Article  PubMed  CAS  Google Scholar 

  • Joyce CM, Potapova O, Delucia AM, Huang X, Basu VP, Grindley ND (2008) Fingers-closing and other rapid conformational changes in DNA polymerase I (Klenow fragment) and their role in nucleotide selectivity. Biochemistry 47(23):6103–6116

    Article  PubMed  CAS  Google Scholar 

  • Jun SH, Reichlen MJ, Tajiri M, Murakami KS (2011) Archaeal RNA polymerase and transcription regulation. Crit Rev Biochem Mol Biol 46(1):27–40

    Article  PubMed  CAS  Google Scholar 

  • Kamtekar S, Berman AJ, Wang J, Lazaro JM, de Vega M, Blanco L, Salas M, Steitz TA (2006) The phi29 DNA polymerase: protein-primer structure suggests a model for the initiation to elongation transition. EMBO J 25(6):1335–1343

    Article  PubMed  CAS  Google Scholar 

  • Kornberg A (1957) Enzymatic synthesis of deoxyribonucleic acid. Harvey Lect 53:83–112

    PubMed  Google Scholar 

  • Kuchta RD, Benkovic P, Benkovic SJ (1988) Kinetic mechanism whereby DNA polymerase I (Klenow) replicates DNA with high fidelity. Biochemistry 27(18):6716–6725

    Article  PubMed  CAS  Google Scholar 

  • Kunkel TA (2004) DNA replication fidelity. J Biol Chem 279(17):16895–16898

    Article  PubMed  CAS  Google Scholar 

  • Lange SS, Takata K, Wood RD (2011) DNA polymerases and cancer. Nat Rev Cancer 11(2):96–110

    Article  PubMed  CAS  Google Scholar 

  • Lehman IR, Bessman MJ, Simms ES, Kornberg A (1958) Enzymatic synthesis of deoxyribonucleic acid. I. Preparation of substrates and partial purification of an enzyme from Escherichia coli. J Biol Chem 233(1):163–170

    PubMed  CAS  Google Scholar 

  • Lemee F, Bergoglio V, Fernandez-Vidal A, Machado-Silva A, Pillaire MJ, Bieth A, Gentil C, Baker L, Martin AL, Leduc C, Lam E, Magdeleine E, Filleron T, Oumouhou N, Kaina B, Seki M, Grimal F, Lacroix-Triki M, Thompson A, Roche H, Bourdon JC, Wood RD, Hoffmann JS, Cazaux C (2010) DNA polymerase theta up-regulation is associated with poor survival in breast cancer, perturbs DNA replication, and promotes genetic instability. Proc Natl Acad Sci USA 107(30):13390–13395

    Article  PubMed  CAS  Google Scholar 

  • Masutani C, Araki M, Yamada A, Kusumoto R, Nogimori T, Maekawa T, Iwai S, Hanaoka F (1999) Xeroderma pigmentosum variant (XP-V) correcting protein from HeLa cells has a thymine dimer bypass DNA polymerase activity. EMBO J 18(12):3491–3501

    Article  PubMed  CAS  Google Scholar 

  • Moldovan GL, Pfander B, Jentsch S (2007) PCNA, the maestro of the replication fork. Cell 129(4):665–679

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Zhao Y, Yamagata Y, Hua YJ, Yang W (2012) Watching DNA polymerase eta make a phosphodiester bond. Nature 487(7406):196–201

    Article  PubMed  CAS  Google Scholar 

  • Ohmori H, Friedberg EC, Fuchs RP, Goodman MF, Hanaoka F, Hinkle D, Kunkel TA, Lawrence CW, Livneh Z, Nohmi T, Prakash L, Prakash S, Todo T, Walker GC, Wang Z, Woodgate R (2001) The Y-family of DNA polymerases. Mol Cell 8(1):7–8

    Article  PubMed  CAS  Google Scholar 

  • Ollis DL, Brick P, Hamlin R, Xuong NG, Steitz TA (1985) Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP. Nature 313(6005):762–766

    Article  PubMed  CAS  Google Scholar 

  • Pachlopnik Schmid J, Lemoine R, Nehme N, Cormier-Daire V, Revy P, Debeurme F, Debre M, Nitschke P, Bole-Feysot C, Legeai-Mallet L, Lim A, de Villartay JP, Picard C, Durandy A, Fischer A, de Saint BG (2012) Polymerase epsilon1 mutation in a human syndrome with facial dysmorphism, immunodeficiency, livedo, and short stature (“FILS syndrome”). J Exp Med 209(13):2323–2330

    PubMed  Google Scholar 

  • Starcevic D, Dalal S, Sweasy JB (2004) Is there a link between DNA polymerase beta and cancer? Cell Cycle 3(8):998–1001

    Article  PubMed  CAS  Google Scholar 

  • Steitz TA (1993) DNA-dependent and RNA-dependent DNA-polymerases. Curr Opin Struct Biol 3(1):31–38

    Article  CAS  Google Scholar 

  • Steitz TA, Steitz JA (1993) A general two-metal-ion mechanism for catalytic RNA. Proc Natl Acad Sci USA 90(14):6498–6502

    Article  PubMed  CAS  Google Scholar 

  • Stevens A (1960) Incorporation of the adenine ribonucleotide into RNA by cell fractions from, E. coli B. Biochem Biophys Res Com 3(1):92–96

    Article  CAS  Google Scholar 

  • Tan XH, Zhao M, Pan KF, Dong Y, Dong B, Feng GJ, Jia G, Lu YY (2005) Frequent mutation related with overexpression of DNA polymerase beta in primary tumors and precancerous lesions of human stomach. Cancer Lett 220(1):101–114

    Article  PubMed  CAS  Google Scholar 

  • Trakselis MA, Benkovic SJ (2001) Intricacies in ATP-dependent clamp loading: variations across replication systems. Structure 9(11):999–1004

    Article  PubMed  CAS  Google Scholar 

  • Watson JD, Crick FH (1953) Molecular structure of nucleic acids. Nature 171:737–738

    Article  PubMed  CAS  Google Scholar 

  • Weiss SB, Gladstone L (1959) A mammalian system for the incorporation of cytidine triphosphate into ribonucleic acid. J Am Chem Soc 81(15):4118–4119

    Article  CAS  Google Scholar 

  • Weissbach A, Baltimore D, Bollum F, Gallo R, Korn D (1975) Nomenclature of eukaryotic DNA polymerases. Science 190(4212):401–402

    Article  PubMed  CAS  Google Scholar 

  • Werner F, Grohmann D (2011) Evolution of multisubunit RNA polymerases in the three domains of life. Nat Rev Microbiol 9(2):85–98

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael A. Trakselis or Katsuhiko S. Murakami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Trakselis, M.A., Murakami, K.S. (2014). Introduction to Nucleic Acid Polymerases: Families, Themes, and Mechanisms. In: Murakami, K., Trakselis, M. (eds) Nucleic Acid Polymerases. Nucleic Acids and Molecular Biology, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39796-7_1

Download citation

Publish with us

Policies and ethics