Abstract
Bacteriophage-encoded RNA polymerase (RNAP) was first discovered in T7 phage infected Escherichia coli cells. It was known that phage infection on host bacterial cells led to redirection of the host gene expression towards generation of progeny phage particles, but a previously uncharacterized “switching event” leading to the expression of late bacteriophage genes was first attributed to a phage-encoded RNAP. This phage RNAP could recognize promoters on the phage genome and express phage genes using a single-polypeptide polymerase of ~100 kDa molecular weight, which is ~4 times smaller than bacterial RNAPs. This was a substantial simplification from the previously known RNAPs from bacteria (5 subunits) and eukaryotes (more than 12 subunits); nonetheless, the single-unit T7 RNAP is able to recognize promoter DNA and unwind double-stranded (ds) DNA to form open complex, and after abortive initiation, it proceeds to processive RNA elongation. The simplicity of T7 phage RNAP made it an ideal model system to study the transcription mechanism and an ideal tool for protein expression system in bacterial cells. In this chapter, we will review the current state of knowledge of transcription mechanism in single-unit bacteriophage RNAPs from the two deeply studied T7 and the N4 phage RNAPs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arnold E, Ding J, Hughes SH, Hostomsky Z (1995) Structures of DNA and RNA polymerases and their interactions with nucleic acid substrates. Curr Opin Struct Biol 5:27–38
Bandwar RP, Ma N, Emanuel SA, Anikin M, Vassylyev DG, Patel SS, McAllister WT (2007) The transition to an elongation complex by T7 RNA polymerase is a multistep process. J Biol Chem 282:22879–22886
Basu RS, Murakami KS (2013) Watching the bacteriophage N4 RNA polymerase transcription by time-dependent soak-trigger-freeze X-ray crystallography. J Biol Chem 288:3305–3311
Brieba LG, Sousa R (2001) T7 promoter release mediated by DNA scrunching. EMBO J 20:6826–6835
Cheetham GM, Steitz TA (1999) Structure of a transcribing T7 RNA polymerase initiation complex. Science 286:2305–2309
Chen Y, Basu R, Gleghorn ML, Murakami KS, Carey PR (2011) Time-resolved events on the reaction pathway of transcript initiation by a single-subunit RNA polymerase: Raman crystallographic evidence. J Am Chem Soc 133:12544–12555
Davydova EK, Rothman-Denes LB (2003) Escherichia coli single-stranded DNA-binding protein mediates template recycling during transcription by bacteriophage N4 virion RNA polymerase. Proc Natl Acad Sci USA 100:9250–9255
Durniak KJ, Bailey S, Steitz TA (2008) The structure of a transcribing T7 RNA polymerase in transition from initiation to elongation. Science 322:553–557
Falco SC, Laan KV, Rothman-Denes LB (1977) Virion-associated RNA polymerase required for bacteriophage N4 development. Proc Natl Acad Sci USA 74:520–523
Gleghorn ML, Davydova EK, Rothman-Denes LB, Murakami KS (2008) Structural basis for DNA-hairpin promoter recognition by the bacteriophage N4 virion RNA polymerase. Mol Cell 32:707–717
Gleghorn ML, Davydova EK, Basu R, Rothman-Denes LB, Murakami KS (2011) X-ray crystal structures elucidate the nucleotidyl transfer reaction of transcript initiation using two nucleotides. Proc Natl Acad Sci USA 108:3566–3571
Glucksmann-Kuis MA, Dai X, Markiewicz P, Rothman-Denes LB (1996) E. coli SSB activates N4 virion RNA polymerase promoters by stabilizing a DNA hairpin required for promoter recognition. Cell 84:147–154
Guo Q, Nayak D, Brieba LG, Sousa R (2005) Major conformational changes during T7RNAP transcription initiation coincide with, and are required for, promoter release. J Mol Biol 353:256–270
Haynes LL, Rothman-Denes LB (1985) N4 virion RNA polymerase sites of transcription initiation. Cell 41:597–605
Huang J, Sousa R (2000) T7 RNA polymerase elongation complex structure and movement. J Mol Biol 303:347–358
Jiang MY, Sheetz MP (1994) Mechanics of myosin motor: force and step size. Bioessays 16:531–532
Kazmierczak KM, Davydova EK, Mustaev AA, Rothman-Denes LB (2002) The phage N4 virion RNA polymerase catalytic domain is related to single-subunit RNA polymerases. EMBO J 21:5815–5823
Ma K, Temiakov D, Anikin M, McAllister WT (2005) Probing conformational changes in T7 RNA polymerase during initiation and termination by using engineered disulfide linkages. Proc Natl Acad Sci USA 102:17612–17617
Murakami KS, Davydova EK, Rothman-Denes LB (2008) X-ray crystal structure of the polymerase domain of the bacteriophage N4 virion RNA polymerase. Proc Natl Acad Sci USA 105:5046–5051
Sousa R, Chung YJ, Rose JP, Wang BC (1993) Crystal structure of bacteriophage T7 RNA polymerase at 3.3 A resolution. Nature 364:593–599
Steitz TA, Smerdon SJ, Jager J, Joyce CM (1994) A unified polymerase mechanism for nonhomologous DNA and RNA polymerases. Science 266:2022–2025
Tahirov TH, Temiakov D, Anikin M, Patlan V, McAllister WT, Vassylyev DG, Yokoyama S (2002) Structure of a T7 RNA polymerase elongation complex at 2.9 A resolution. Nature 420:43–50
Tang GQ, Roy R, Ha T, Patel SS (2008) Transcription initiation in a single-subunit RNA polymerase proceeds through DNA scrunching and rotation of the N-terminal subdomains. Mol Cell 30:567–577
Temiakov D, Mentesana PE, Ma K, Mustaev A, Borukhov S, McAllister WT (2000) The specificity loop of T7 RNA polymerase interacts first with the promoter and then with the elongating transcript, suggesting a mechanism for promoter clearance. Proc Natl Acad Sci USA 97:14109–14114
Temiakov D, Patlan V, Anikin M, McAllister WT, Yokoyama S, Vassylyev DG (2004) Structural basis for substrate selection by t7 RNA polymerase. Cell 116:381–391
Yin YW, Steitz TA (2002) Structural basis for the transition from initiation to elongation transcription in T7 RNA polymerase. Science 298:1387–1395
Yin YW, Steitz TA (2004) The structural mechanism of translocation and helicase activity in T7 RNA polymerase. Cell 116:393–404
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Basu, R.S., Murakami, K.S. (2014). Bacteriophage RNA Polymerases. In: Murakami, K., Trakselis, M. (eds) Nucleic Acid Polymerases. Nucleic Acids and Molecular Biology, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39796-7_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-39796-7_10
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39795-0
Online ISBN: 978-3-642-39796-7
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)