Skip to main content

Bacteriophage RNA Polymerases

  • Chapter
  • First Online:
Nucleic Acid Polymerases

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 30))

Abstract

Bacteriophage-encoded RNA polymerase (RNAP) was first discovered in T7 phage infected Escherichia coli cells. It was known that phage infection on host bacterial cells led to redirection of the host gene expression towards generation of progeny phage particles, but a previously uncharacterized “switching event” leading to the expression of late bacteriophage genes was first attributed to a phage-encoded RNAP. This phage RNAP could recognize promoters on the phage genome and express phage genes using a single-polypeptide polymerase of ~100 kDa molecular weight, which is ~4 times smaller than bacterial RNAPs. This was a substantial simplification from the previously known RNAPs from bacteria (5 subunits) and eukaryotes (more than 12 subunits); nonetheless, the single-unit T7 RNAP is able to recognize promoter DNA and unwind double-stranded (ds) DNA to form open complex, and after abortive initiation, it proceeds to processive RNA elongation. The simplicity of T7 phage RNAP made it an ideal model system to study the transcription mechanism and an ideal tool for protein expression system in bacterial cells. In this chapter, we will review the current state of knowledge of transcription mechanism in single-unit bacteriophage RNAPs from the two deeply studied T7 and the N4 phage RNAPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arnold E, Ding J, Hughes SH, Hostomsky Z (1995) Structures of DNA and RNA polymerases and their interactions with nucleic acid substrates. Curr Opin Struct Biol 5:27–38

    Article  PubMed  CAS  Google Scholar 

  • Bandwar RP, Ma N, Emanuel SA, Anikin M, Vassylyev DG, Patel SS, McAllister WT (2007) The transition to an elongation complex by T7 RNA polymerase is a multistep process. J Biol Chem 282:22879–22886

    Article  PubMed  CAS  Google Scholar 

  • Basu RS, Murakami KS (2013) Watching the bacteriophage N4 RNA polymerase transcription by time-dependent soak-trigger-freeze X-ray crystallography. J Biol Chem 288:3305–3311

    Article  PubMed  CAS  Google Scholar 

  • Brieba LG, Sousa R (2001) T7 promoter release mediated by DNA scrunching. EMBO J 20:6826–6835

    Article  PubMed  CAS  Google Scholar 

  • Cheetham GM, Steitz TA (1999) Structure of a transcribing T7 RNA polymerase initiation complex. Science 286:2305–2309

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Basu R, Gleghorn ML, Murakami KS, Carey PR (2011) Time-resolved events on the reaction pathway of transcript initiation by a single-subunit RNA polymerase: Raman crystallographic evidence. J Am Chem Soc 133:12544–12555

    Article  PubMed  CAS  Google Scholar 

  • Davydova EK, Rothman-Denes LB (2003) Escherichia coli single-stranded DNA-binding protein mediates template recycling during transcription by bacteriophage N4 virion RNA polymerase. Proc Natl Acad Sci USA 100:9250–9255

    Article  PubMed  CAS  Google Scholar 

  • Durniak KJ, Bailey S, Steitz TA (2008) The structure of a transcribing T7 RNA polymerase in transition from initiation to elongation. Science 322:553–557

    Article  PubMed  CAS  Google Scholar 

  • Falco SC, Laan KV, Rothman-Denes LB (1977) Virion-associated RNA polymerase required for bacteriophage N4 development. Proc Natl Acad Sci USA 74:520–523

    Article  PubMed  CAS  Google Scholar 

  • Gleghorn ML, Davydova EK, Rothman-Denes LB, Murakami KS (2008) Structural basis for DNA-hairpin promoter recognition by the bacteriophage N4 virion RNA polymerase. Mol Cell 32:707–717

    Article  PubMed  CAS  Google Scholar 

  • Gleghorn ML, Davydova EK, Basu R, Rothman-Denes LB, Murakami KS (2011) X-ray crystal structures elucidate the nucleotidyl transfer reaction of transcript initiation using two nucleotides. Proc Natl Acad Sci USA 108:3566–3571

    Article  PubMed  CAS  Google Scholar 

  • Glucksmann-Kuis MA, Dai X, Markiewicz P, Rothman-Denes LB (1996) E. coli SSB activates N4 virion RNA polymerase promoters by stabilizing a DNA hairpin required for promoter recognition. Cell 84:147–154

    Article  PubMed  CAS  Google Scholar 

  • Guo Q, Nayak D, Brieba LG, Sousa R (2005) Major conformational changes during T7RNAP transcription initiation coincide with, and are required for, promoter release. J Mol Biol 353:256–270

    Article  PubMed  CAS  Google Scholar 

  • Haynes LL, Rothman-Denes LB (1985) N4 virion RNA polymerase sites of transcription initiation. Cell 41:597–605

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Sousa R (2000) T7 RNA polymerase elongation complex structure and movement. J Mol Biol 303:347–358

    Article  PubMed  CAS  Google Scholar 

  • Jiang MY, Sheetz MP (1994) Mechanics of myosin motor: force and step size. Bioessays 16:531–532

    Article  PubMed  CAS  Google Scholar 

  • Kazmierczak KM, Davydova EK, Mustaev AA, Rothman-Denes LB (2002) The phage N4 virion RNA polymerase catalytic domain is related to single-subunit RNA polymerases. EMBO J 21:5815–5823

    Article  PubMed  CAS  Google Scholar 

  • Ma K, Temiakov D, Anikin M, McAllister WT (2005) Probing conformational changes in T7 RNA polymerase during initiation and termination by using engineered disulfide linkages. Proc Natl Acad Sci USA 102:17612–17617

    Article  PubMed  CAS  Google Scholar 

  • Murakami KS, Davydova EK, Rothman-Denes LB (2008) X-ray crystal structure of the polymerase domain of the bacteriophage N4 virion RNA polymerase. Proc Natl Acad Sci USA 105:5046–5051

    Article  PubMed  CAS  Google Scholar 

  • Sousa R, Chung YJ, Rose JP, Wang BC (1993) Crystal structure of bacteriophage T7 RNA polymerase at 3.3 A resolution. Nature 364:593–599

    Article  PubMed  CAS  Google Scholar 

  • Steitz TA, Smerdon SJ, Jager J, Joyce CM (1994) A unified polymerase mechanism for nonhomologous DNA and RNA polymerases. Science 266:2022–2025

    Article  PubMed  CAS  Google Scholar 

  • Tahirov TH, Temiakov D, Anikin M, Patlan V, McAllister WT, Vassylyev DG, Yokoyama S (2002) Structure of a T7 RNA polymerase elongation complex at 2.9 A resolution. Nature 420:43–50

    Article  PubMed  CAS  Google Scholar 

  • Tang GQ, Roy R, Ha T, Patel SS (2008) Transcription initiation in a single-subunit RNA polymerase proceeds through DNA scrunching and rotation of the N-terminal subdomains. Mol Cell 30:567–577

    Article  PubMed  CAS  Google Scholar 

  • Temiakov D, Mentesana PE, Ma K, Mustaev A, Borukhov S, McAllister WT (2000) The specificity loop of T7 RNA polymerase interacts first with the promoter and then with the elongating transcript, suggesting a mechanism for promoter clearance. Proc Natl Acad Sci USA 97:14109–14114

    Article  PubMed  CAS  Google Scholar 

  • Temiakov D, Patlan V, Anikin M, McAllister WT, Yokoyama S, Vassylyev DG (2004) Structural basis for substrate selection by t7 RNA polymerase. Cell 116:381–391

    Article  PubMed  CAS  Google Scholar 

  • Yin YW, Steitz TA (2002) Structural basis for the transition from initiation to elongation transcription in T7 RNA polymerase. Science 298:1387–1395

    Article  PubMed  CAS  Google Scholar 

  • Yin YW, Steitz TA (2004) The structural mechanism of translocation and helicase activity in T7 RNA polymerase. Cell 116:393–404

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuhiko S. Murakami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Basu, R.S., Murakami, K.S. (2014). Bacteriophage RNA Polymerases. In: Murakami, K., Trakselis, M. (eds) Nucleic Acid Polymerases. Nucleic Acids and Molecular Biology, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39796-7_10

Download citation

Publish with us

Policies and ethics