Some Theoretical Issues of Scientific Visualization as a Method of Data Analysis

  • Victor Pilyugin
  • Eugeniya Malikova
  • Valery Adzhiev
  • Alexander Pasko
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7870)

Abstract

The paper discusses scientific visualization as a modern computer-based method of scientific data analysis in experimental and theoretical research. A definition of this method and descriptions of some of its characteristics are given as observed by the authors from the generalization of practical experience. An example of the implementation of this method are provided and illustrated on the basis of the HyperFun programming language and its supporting software tools.

Keywords

Scientific data analysis scientific visualization spatial scene geometric modeling Function Representation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adzhiev, V., Cartwright, R., Fausett, E., Ossipov, A., Pasko, A., Savchenko, V.: HyperFun project: a framework for collaborative multidimensional FRep modelling. In: Proceedings of Implicit Surfaces 1999, Eurographics/ACM SIGGRAPH Workshop, pp. 59–69 (June 1999)Google Scholar
  2. 2.
    Adzhiev, V., Pasko, A., Savchenko, V., Sourin, A.: Modeling shapes using real functions. Open Systems 5(19), 14–18 (1996)Google Scholar
  3. 3.
    Cartwright, R., Adzhiev, V., Pasko, A., Goto, Y., Kunii, T.: Web-based shape modelling with HyperFun. IEEE Computer Graphics and Applications 25(2), 60–69 (2005)CrossRefGoogle Scholar
  4. 4.
    Pasko, A., Adzhiev, V., Comninos, P. (eds.): Heterogeneous Objects Modelling and Applications. LNCS, vol. 4889, 285 p. Springer, Heidelberg (2008)Google Scholar
  5. 5.
    Lorensen, W., Cline, H.: Marching Cubes: A high resolution 3D surface construction algorithm. Computer Graphics 21(4), 163–169 (1987)CrossRefGoogle Scholar
  6. 6.
    Pasko, A., Adzhiev, V.: Function-based shape modeling: mathematical framework and specialized language. In: Winkler, F. (ed.) ADG 2002. LNCS (LNAI), vol. 2930, pp. 132–160. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Pasko, A., Adzhiev, V., Sourin, A., Savchenko, V.: Function representation in geometric modelling: concepts, implementation and applications. The Visual Computer 11(8), 429–446 (1995)CrossRefGoogle Scholar
  8. 8.
    Pasko, A., Adzhiev, V., Schmitt, B., Schlick, C.: Constructive hypervolume modelling. Graphical Models 63(6), 413–442 (2001)MATHCrossRefGoogle Scholar
  9. 9.
    Pasko, A., Pilyugin, V., Pokrovsky, V.: Geometric modeling in the analysis of trivariate functions. Computers and Graphics, vol 12(3/4), 457–465 (1988)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Victor Pilyugin
    • 1
  • Eugeniya Malikova
    • 1
  • Valery Adzhiev
    • 2
  • Alexander Pasko
    • 2
  1. 1.National Research Nuclear University "MEPhI"MoscowRussia
  2. 2.National Centre for Computer AnimationBournemouth UniversityBournemouthUnited Kingdom

Personalised recommendations