Skip to main content

Hydrogen Atom Rydberg Tagging Time-of-Flight Crossed Molecular Beam Apparatus

  • Chapter
  • First Online:
  • 460 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

This chapter focuses on hydrogen atom Rydberg tagging time-of-flight (HRTOF) crossed molecular beam apparatus, which was used for the research described in this thesis. In Sect. 2.1, I will introduce the general knowledge of molecular beam and crossed molecular beam and some history; HRTOF technique is described in Sect. 2.2; the vacuum system, detection and acquirement system, as well as the resolution of the apparatus are described in detail in Sect. 2.3.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Althorpe SC, Fernandez-Alonso F, Bean BD et al (2002) Observation and interpretation of a time-delayed mechanism in the hydrogen exchange reaction. Nature 416:67–70

    Article  CAS  Google Scholar 

  2. Ashfold MNR, Bennett CL, Dixon RN (1986) Dissociation dynamics of NH31A2): experiment and theory. Faraday Discuss Chem Soc 82:163–175

    Article  CAS  Google Scholar 

  3. Ashfold MNR, Dixon RN, Kono M et al (1997) Near ultraviolet photolysis of ammonia and methylamine studied by H Rydberg atom photofragment translational spectroscopy. Philos Trans R Soc Lond a-Math Phys Eng Sci 355:1659–1674

    Article  CAS  Google Scholar 

  4. Biesner J, Schnieder L, Schmeer J et al (1988) State selective photodissociation dynamics of A-tilde state ammonia. I. J Chem Phys 88:3607–3616

    Article  CAS  Google Scholar 

  5. Biesner J, Schnieder L, Ahlers G et al (1989) State selective photodissociation dynamics of A-tilde state ammonia. II. J Chem Phys 91:2901–2911

    Article  CAS  Google Scholar 

  6. Casavecchia P, Capozza G, Segoloni E et al (2005) Dynamics of the O(3P) + C2H4 reaction: Identification of five primary product channels (vinoxy, acetyl, methyl, methylene, and ketene) and branching ratios by the crossed molecular beam technique with soft electron ionization. J Phys Chem A 109:3527–3530

    Article  CAS  Google Scholar 

  7. Dai DX, Wang CC, Harich SA et al (2003) Interference of quantized transition-state pathways in the H + D2 → D + HD chemical reaction. Science 300:1730–1734

    Article  CAS  Google Scholar 

  8. Dixon RN, Hwang DW, Yang XF et al (1999) Chemical “double slits”: dynamical interference of photodissociation pathways in water. Science 285:1249–1253

    Article  CAS  Google Scholar 

  9. Even U, Jortner J, Noy D et al (2000) Cooling of large molecules below 1 K and He clusters formation. J Chem Phys 112:8068–8071

    Article  CAS  Google Scholar 

  10. Harich SA, Hwang DWH, Yang XF et al (2000) Photodissociation of H2O at 121.6 nm: a state-to-state dynamical picture. J Chem Phys 113:10073–10090

    Article  CAS  Google Scholar 

  11. Harich SA, Dai DX, Wang CC et al (2002) Forward scattering due to slow-down of the intermediate in the H + HD → D + H2 reaction. Nature 419:281–284

    Article  CAS  Google Scholar 

  12. Herschbach DR (1986) Molecular dynamics of elementary chemical reactions. In: Nobel Lecture

    Google Scholar 

  13. Kantrowitz A, Grey J (1951) A high intensity source for the molecular beam. Part I Theoretical. Rev Sci Instrum 22:328–332

    Article  CAS  Google Scholar 

  14. Kistiakowsky GB, Slichter WP (1951) A high intensity source for the molecular beam. Part II. Experimental. Rev Sci Instrum 22:333–337

    Article  CAS  Google Scholar 

  15. Krautwald HJ, Schnieder L, Welge KH et al (1986) Hydrogen-atom photofragment spectroscopy: photodissociation dynamics of H2O in the B-X absorption band. Faraday Discuss Chem Soc 82:99–110

    Article  CAS  Google Scholar 

  16. Langford SR, Batten AD, Kono M et al (1997) Near-UV photodissociation dynamics of formic acid. J Chem Soc, Faraday Trans 93:3757–3764

    Article  CAS  Google Scholar 

  17. Langford SR, Regan PM, Orr-Ewing AJ et al (1998) On the UV photodissociation dynamics of hydrogen iodide. Chem Phys 231:245–260

    Article  CAS  Google Scholar 

  18. Lee YT (1987) Molecular beam studies of elementary chemical processes. Science 236:793

    Article  CAS  Google Scholar 

  19. Lee YT, Mcdonald JD, Lebreton PR et al (1969) Molecular beam reactive scattering apparatus with electron bombardment detector. Rev Sci Instrum 40:1402–1408

    Article  CAS  Google Scholar 

  20. Lin JJ, Hwang DW, Harich S et al (1998) New low background crossed molecular beam apparatus: low background detection of H2. Rev Sci Instrum 69:1642–1646

    Article  CAS  Google Scholar 

  21. Liu XH, Lin JJ, Harich S et al (2000) A quantum state-resolved insertion reaction: O(1D) + H2(J = 0→ OH(2∏, v, N) + H(2S). Science 289:1536–1538

    Article  CAS  Google Scholar 

  22. Marangos JP, Shen N, Al HME (1990) Broadly tunable vacuum-ultraviolet radiation source employing resonant enhanced sum-frequency mixing in krypton. J Opt Soc Am B 7:1254–1259

    Article  CAS  Google Scholar 

  23. Mordaunt DH, Ashfold MNR, Dixon RN et al (1998) Near threshold photodissociation of acetylene. J Chem Phys 108:519–526

    Article  CAS  Google Scholar 

  24. Puell H, Spanner K, Falkenstein W et al (1976) Third-harmonic generation of mode-locked Nd: glass laser pulses in phase-matched Rb-Xe mixtures. Phys Rev A 14:2240

    Article  CAS  Google Scholar 

  25. Qiu M (2006) thesis: high resolution crossed molecular beams study on the F + H2 reaction. In: Dalian Institute of Chemical Physics, CAS. Dalian, China

    Google Scholar 

  26. Qiu MH, Che L, Ren ZF et al (2005) High resolution time-of-flight spectrometer for crossed molecular beam study of elementary chemical reactions. Rev Sci Instrum 76:083107

    Google Scholar 

  27. Reed CL, Kono M, Langford SR et al (1997) Ultraviolet photodissociation dynamics of formyl fluoride.2. Energy disposal in the H + FCO product channel. J Chem Soc, Faraday Trans 93:2721–2729

    Article  CAS  Google Scholar 

  28. Ren ZF, Qiu MH, Che L et al (2006) A double-stage pulsed discharge fluorine atom beam source. Rev Sci Instrum 77:016102

    Article  Google Scholar 

  29. Schnieder L, Seekamp-Rahn K, Wrede E et al (1997) Experimental determination of quantum state resolved differential cross sections for the hydrogen exchange reaction H + D2 → HD + D. J Chem Phys 107:6175–6195

    Article  CAS  Google Scholar 

  30. Scoles G (ed) (1988) Atomic and molecular beam methods, vol 1. Oxford University Press, Oxford

    Google Scholar 

  31. Scoles G (ed) (1992) Atomic and molecular beam methods, vol 2. Oxford University Press, Oxford

    Google Scholar 

  32. Smalley RE, Wharton L, Levy DH (1977) Molecular optical spectroscopy with supersonic beam and jets. Acc Chem Res 10:139–146

    Article  CAS  Google Scholar 

  33. Taylor EH, Datz S (1955) Study of chemical reaction mechanisms with molecular beams. The reaction of K with HBr. J Chem Phys 23:1711–1718

    Article  CAS  Google Scholar 

  34. Townsend D, Lahankar SA, Lee SK et al (2004) The roaming atom: straying from the reaction path in formaldehyde decomposition. Science 306:1158–1161

    Article  CAS  Google Scholar 

  35. Wang J, Shamamian VA, Thomas BR et al (1988) Speed ratios greater than 1000 and temperature less than 1-mK in a pulsed He beam. Phys Rev Lett 60:696–699

    Article  CAS  Google Scholar 

  36. Yan S, Wu YT, Zhang B et al (2007) Do vibrational excitations of CHD3 preferentially promote reactivity toward the chlorine atom? Science 316:1723–1726

    Article  CAS  Google Scholar 

  37. Yang XF, Hwang DW, Lin JJ et al (2000) Dissociation dynamics of the water molecule on the (A) over-tilde B-1(1) electronic surface. J Chem Phys 113:10597–10604

    Article  CAS  Google Scholar 

  38. Yin HM, Kable SH, Zhang X et al (2006) Signatures of H2CO photodissociation from two electronic states. Science 311:1443–1446

    Article  CAS  Google Scholar 

  39. Yuan KJ, Cheng Y, Cheng L et al (2008) Nonadiabatic dissociation dynamics in H2O: competition between rotationally and nonrotationally mediated pathways. Proc Natl Acad Sci USA 105:19148–19153

    Article  CAS  Google Scholar 

  40. Yang, X, Lin J, Lee YT, Blank DA, Suits AG, and Wodtke AM (1997) Universal crossed molecular beams apparatus with synchrotron photoionization mass spectrometric product detection. Rev Sci Instrum. 68(9): 3317–3326.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zefeng Ren .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ren, Z. (2014). Hydrogen Atom Rydberg Tagging Time-of-Flight Crossed Molecular Beam Apparatus. In: State-to-State Dynamical Research in the F+H2 Reaction System. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39756-1_2

Download citation

Publish with us

Policies and ethics