Enhancing Knowledge Marketplaces Through the Theory of Knowledge Measurement

  • David G. Schwartz
Part of the Progress in IS book series (PROIS)


This chapter discusses the creation of objective measures for the comparison of different types of knowledge repositories (KR) to enhance the linkage between knowledge management and strategic e-business with a specific focus on knowledge marketplaces. Knowledge repositories proliferate yet our ability to objectively assess the value and suitability of a given knowledge repository for a given task has much remained in the realm of trial and error. Knowledge marketplaces can help organizations leverage the wealth of information gathered through e-business activities. The field of knowledge management has grown significantly over the past decade yet we are lacking formal methods through which knowledge management resources can be measured. In order to facilitate such measures, and enable more effective use of knowledge marketplaces, we must first deal with comparing the value of different types of knowledge in an organizational setting and how such value is measured in and reflected by knowledge repositories. In this chapter we present the background and definition of the problem, and introduce an approach based on semantic calculus and set theory to create a theory of knowledge measurement. We then discuss how a theory of knowledge measurement (TKM) can be applied to knowledge marketplaces improving the linkage between knowledge management and strategic e-business.


Knowledge repositories Knowledge management Information quality Metrics Ontology Measurement Knowledge value Knowledge quality Semantics 


  1. Abecker, A., Apostolou, D., Franz, J., Maass, W., Mentzas, G., Reuschling, C., & Tabor, S. (2003). Towards an information ontology for knowledge asset trading. In Proceedings of the 9th International Conference on Concurrent Enterprising. Espoo, Finland.Google Scholar
  2. Alavi, M., & Leidner, D. E. (2001). Review: Knowledge management and knowledge management systems: Conceptual foundations and research issues. MIS Quarterly, 25(1), 107–136. doi: 10.2307/3250961
  3. Anderson, C. J., Glassman, M., McAfee, R. B., & Pinelli, T. (2001). An investigation of factors affecting how engineers and scientists seek information. Journal of Engineering and Technology Management, 18(2), 131–155.CrossRefGoogle Scholar
  4. Apostolou, D., Georgolios, P., Klein, B., Franz, J., Maass, W., Abecker, A., Kafentzis, K., et al. (2004). Towards provision of knowledge-intensive products and services over the Web. In Proceedings of International Conference on Artificial Intelligence and Applications (IASTED).Google Scholar
  5. Apostolou, D., Mentzas, G., Abecker, A., Eickhoff, W., Maas, W., Georgolios, P., Kafentzis, K., et al. (2002). Challenges and directions in knowledge asset trading. Practical Applications of Knowledge Management, pp. 549–564.Google Scholar
  6. Asher, A., Duke, L., & Wilson, S. (2013). Paths of discovery: Comparing the search effectiveness of EBSCO discovery service, summon, google scholar, and conventional library resources. College and Research Libraries. Google Scholar
  7. Bolisani, E., & Oltramari, A. (2012). Knowledge as a measurable object in business contexts: a stock-and-flow approach. Knowledge Management Research and Practice, 10(3), 275–286. doi: 10.1057/kmrp.2012.13 CrossRefGoogle Scholar
  8. Bontis, N. (2001). Assessing knowledge assets: a review of the models used to measure intellectual capital. International Journal of Management Reviews, 3(1), 41–60.CrossRefGoogle Scholar
  9. Bose, R. (2004). Knowledge management metrics. Industrial Management and Data Systems, 104(6), 457–468. doi: 10.1108/02635570410543771 CrossRefGoogle Scholar
  10. Brophy, J., & Bawden, D. (2005). Is Google enough? Comparison of an internet search engine with academic library resources. Aslib Proceedings, 57(6), 498–512.Google Scholar
  11. Brydon, M., & Vining, A. R. (2006). Understanding the failure of internal knowledge markets: A framework for diagnosis and improvement. Information and Management, 43(8), 964–974. doi: 10.1016/ CrossRefGoogle Scholar
  12. Burton-Jones, A., Storey, V., Sugumaran, V., & Ahluwalia, P. (2005). A semiotic metrics suite for assessing the quality of ontologies. Data and Knowledge Engineering, 55(1), 84–102. doi: 10.1016/j.datak.2004.11.010 CrossRefGoogle Scholar
  13. Chung, T., & Galletta, D. (2012). Conceptualizing knowledge use: A theoretical framework and empirical study. In 45th Hawaii International Conference on System Science (pp. 3949–3958). IEEE.Google Scholar
  14. Culnan, M. J. (1983). Environmental scanning: The effects of task complexity and source accessibility on information gathering behavior. Decision Sciences, 14(2), 194–206. doi: 10.1111/j.1540-5915.1983.tb00180.x CrossRefGoogle Scholar
  15. Davies, J., Weeks, R., & Krohn, U. (2003). QuizRDF: Search technology for the semantic Web. In J. Davies, D. Fensel, & F. Van Harmelen (Eds.), Towards the semantic web: Ontology-driven Knowledge Management (pp. 133–143). New York: Wiley. doi: 10.1109/HICSS.2004.1265293
  16. Davies, N. J. (2000). Knowledge management. BT Technology Journal, 18(1), 62–63. doi: 10.1023/A:1026509401442 CrossRefGoogle Scholar
  17. Fahey, L., Srivastava, R., Sharon, J. S., & Smith, D. E. (2001). Linking e-business and operating processes: The role of knowledge management. IBM Systems Journal, 40(4), 889–907.CrossRefGoogle Scholar
  18. Gerstberger, P., & Allen, T. (1968). Criteria used by research and development engineers in the selection of an information source. Journal of Applied Psychology, 52(4), 272–279.CrossRefGoogle Scholar
  19. Helms, M., Ahmadi, M., Jih, W., & Ettkin, L. (2008). Technologies in support of mass customization strategy: Exploring the linkages between e-commerce and knowledge management. Computers in Industry, 59(4), 351–363.CrossRefGoogle Scholar
  20. Holsapple, C. W., & Joshi, K. D. (2001). Organizational knowledge resources. Decision Support Systems, 31(1), 39–54. doi: 10.1016/S0167-9236(00)00118-4 CrossRefGoogle Scholar
  21. Hsu, H., & Mykytyn, P., Jr. (2006). Intellectual capital. In D. G. Schwartz (Ed.), Encyclopedia of knowledge management (pp. 274–280). Hershey PA: Idea Group Reference.Google Scholar
  22. Jarke, M., Jeusfeld, M. A., Quix, C., & Vassiliadis, P. (1999). Architecture and quality in data warehouses: An extended repository approach. Information Systems, 24(3), 229–253. doi: 10.1016/S0306-4379(99)00017-4 CrossRefGoogle Scholar
  23. Jennex, M. (2006). Knowledge management success models. In D. G. Schwartz (Ed.), Encyclopedia of knowledge management (pp. 436–441). Hershey PA: Idea Group Reference.Google Scholar
  24. Kafentzis, K., Mentzas, G., Apostolou, D., & Georgolios, P. (2004). Knowledge marketplaces: Strategic issues and business models. Journal of Knowledge Management, 8(1), 130–146.CrossRefGoogle Scholar
  25. Kankanhalli, A., Lee, O., & Lim, K. (2011). Knowledge reuse through electronic repositories: A study in the context of customer service support. Information and Management, 48(2–3), 106–113.CrossRefGoogle Scholar
  26. Kankanhalli, A., & Tan, B. (2004). A review of metrics for knowledge management systems and knowledge management initiatives. In Proceedings of the 37th Hawaii International Conference on System Sciences, IEEE.Google Scholar
  27. Kwan, M. M., & Balasubramanian, P. (2003). Knowledge scope: Managing knowledge in context. Decision Support Systems, 35(4), 467–486. doi: 10.1016/S0167-9236(02)00126-4 CrossRefGoogle Scholar
  28. Liebowitz, J. (2001). Knowledge management and its link to artificial intelligence. Expert Systems with Applications, 20(1), 1–6. doi: 10.1016/S0957-4174(00)00044-0 CrossRefGoogle Scholar
  29. Lin, H., & Lee, G. (2005). Impact of organizational learning and knowledge management factors on e-business adoption. Management Decision, 43(2), 171–188.CrossRefGoogle Scholar
  30. Maedche, A., & Staab, S. (2002). Measuring similarity between ontologies. Lecture Notes in Computer Science: Knowledge engineering and knowledge management: Ontologies and the semantic web (pp. 15–21). Heidelberg: Springer.Google Scholar
  31. Matson, E., Patiath, P., & Shavers, T. (2003). Stimulating knowledge sharing: Strengthening Your Organization's Internal Knowledge Market. Organizational Dynamics, 32(3), 275–285. doi: 10.1016/S0090-2616(03)00030-5 CrossRefGoogle Scholar
  32. Mentzas, G., & Apostolou, D. (2001). Knowledge networking: A holistic solution for leveraging corporate knowledge. Journal of Knowledge Management, 5(1), 94–107.CrossRefGoogle Scholar
  33. Oppong, S. A., Yen, D. C., & Merhout, J. W. (2005). A new strategy for harnessing knowledge management in e-commerce. Technology in Society, 27(3), 413–435. doi: 10.1016/j.techsoc.2005.04.009 CrossRefGoogle Scholar
  34. O’Reilly, C. (1982). Variations in decision makers’ use of information sources: The impact of quality and accessibility of information. Academy of Management Journal, 25(4).Google Scholar
  35. Pirolli, P., & Wilson, M. (1998). A theory of the measurement of knowledge content, access, and learning. Psychological Review, 105(1), 58–82.CrossRefGoogle Scholar
  36. Poston, R., & Speier, C. (2005). Effective use of knowledge management systems: A process model of content ratings and credibility indicators. MIS Quarterly, 29(2), 221–244.Google Scholar
  37. Rao, L., & Osei-Bryson, K.-M. (2007). Towards defining dimensions of knowledge systems quality. Expert Systems with Applications, 33(2), 368–378. doi: 10.1016/j.eswa.2006.05.003 CrossRefGoogle Scholar
  38. Reich, Y. (1992). The value of design knowledge. In B. R. Gaines, M. A. Musen, & J. H. Booth (Eds.), Proceedings of the 7th Banff Knowledge Acquisition for Knowledge Based Systems Workshop. SRDG Publications.Google Scholar
  39. Reich, Y. (1995). Measuring the value of knowledge. International Journal of Human-Computer Studies, 42(1), 3–30.CrossRefGoogle Scholar
  40. Schwartz, D. G. (1997). Mozart versus Minsky: Information bias on the Internet. Internet Research, 7(4), 263–268. doi: 10.1108/10662249710187259 CrossRefGoogle Scholar
  41. Schwartz, D. G. (1999). When email meets organizational memories: Addressing threats to communication in a learning organization. International Journal of Human-Computer Studies, 51(3), 599–614. doi: 10.1006/ijhc.1999.0276 CrossRefGoogle Scholar
  42. Shah, A. K., & Oppenheimer, D. M. (2009). The path of least resistance: Using easy-to-access information. Current Directions in Psychological Science, 18(4), 232–236. doi: 10.1111/j.1467-8721.2009.01642.x CrossRefGoogle Scholar
  43. Shin, M. (2004). A framework for evaluating economics of knowledge management systems. Information and Management, 42(1), 179–196. doi: 10.1016/ CrossRefGoogle Scholar
  44. Skuce, D., & Lethbridge, T. (1995). CODE4: A unified system for managing conceptual knowledge. International Journal of Human Computer Studies, 42(4), 413–451.CrossRefGoogle Scholar
  45. Stranieri, A., & Zeleznikow, J. (1999). The evaluation of legal knowledge based systems. In Proceedings of the 7th International Conference on Artificial Intelligence and Law (pp. 18–24). ACM.Google Scholar
  46. Weigel, F., Ezell, J., & Hazen, B. (2012). Transactive memory theory: A review of the literature and suggestions for future MIS research. In Proceedings of the Southern Association for Information Systems Conference (pp. 217–222). Atlanta, GA.Google Scholar
  47. Weinberger, A., Stegmann, K., & Fischer, F. (2007). Knowledge convergence in collaborative learning: Concepts and assessment. Learning and Instruction, 17(4), 416–426.CrossRefGoogle Scholar
  48. Wooldridge, M. (1996). Time, knowledge, and choice. In M. Woolridge, J. Muller, & M. Tambe (Eds.), Intelligent Agents II: Agent Theories, Architectures and Languages (pp. 79–96). Berlin: Springer.Google Scholar
  49. Yoo, D. (2012). Perceived knowledge quality: A Sensemaking Perspective. In AMCIS 2012 Proceedings, AIS.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Professor of Information Systems, Graduate School of Business AdministrationBar-Ilan UniversityRamat GanIsrael

Personalised recommendations