Advertisement

Methanol as a Hydrogen and Energy Carrier

  • Ludolf PlassEmail author
  • Martin Bertau
  • Matthias Linicus
  • Ringo Heyde
  • Eric Weingart
Chapter

Abstract

Energy sources in the future are a widely discussed topic, and many statements have been published recently by scientific societies and organisations. However, in most cases, an overall view on the topics of energy, fuels, raw materials, and climate is missing and only little attention is paid to the recycling of CO2 for use as a raw material (e.g. for the synthesis of methanol), whereas much more emphasis is placed on carbon capture and storage [1]. Future energy systems will rely more and more on renewable energy (RE), such as wind, solar power, and biomass.

Keywords

Storage Capacity Wind Power Hydrogen Storage Power Production Carbon Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. Bertau, F.X. Effenberger, W. Keim, G. Menges, H. Offermanns, Chem. Ing. Tech. 82, 2055–2058 (2010)CrossRefGoogle Scholar
  2. 2.
    C. Pieper, H. Rubel, Electricity storage, making large-scale adoption of wind and solar energies a reality. Boston Consulting Group Report, 2010Google Scholar
  3. 3.
    J. Nitsch, B. Wenzel, Langfristscenarien und Strategien für den Ausbau erneuerbarer Energien in Deutschland—Leitscenarien. German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, Berlin, 2009Google Scholar
  4. 4.
    D. Stolten, T. Grube, M. Weber, Windstrom und Wasserstoff—Eine Alternative, 77. Meeting of the German Physical Society, Working Group Energy, 27.03.2012, Berlin, Germany, 2012Google Scholar
  5. 5.
    F. Behrendt, Chem. Ing. Tech. 83, 1755 (2011)CrossRefGoogle Scholar
  6. 6.
    J. Auer, Moderne Stromspeicher, Unverzichtbare Bausteine der Energiewende, DB Research, 03 Jan 2012Google Scholar
  7. 7.
    H. Splietthoff, A. Wauschkuhn, C. Schuhbauer, Chem. Ing. Tech. 83(11), 1792–1804 (2011)CrossRefGoogle Scholar
  8. 8.
    S. Bajohr, M. Götz, F. Graf, F. Ortfoll, Speicherung von regenerativ erzeugter elektrischer Energie in der Erdgasinfrastruktur, Fachberichte Rohrnetz, gwf-Gas/Erdgas, April 2011, pp. 200–210Google Scholar
  9. 9.
    S. Kohler, Siemens Publication Pictures of the Future, 2012, pp. 48–49Google Scholar
  10. 10.
    J. Nitsch, T. Pregger, T. Naegler, N. Gerhardt, B. Wenzel, Langfristszenarien und Strategien für den Ausbau der erneuerbaren Energien in Deutschland, DLR Stuttgart, Fraunhofer-IWES, kassel,IfnE Teltow; Studie im Auftrag des BMU, März 2012Google Scholar
  11. 11.
    Frankfurter Allgemeine Zeitung, Das Deutsche Stromnetz läuft über. 11 Jan 2013Google Scholar
  12. 12.
    M. Sterner, N. Gerhardt, Y.M. Saint-Drenan, M. Specht, B. Stürmer, U. Zuberbühler Erneuerbares Methan—Eine Lösung zur Integration und Speicherung Erneuerbarer Energien und ein Weg zur regenerativen Vollversorgung. Solarzeitalter 01/2010. (Eurosolar, Berlin 2010)Google Scholar
  13. 13.
    F. Schüth, Chem. Ing. Tech. 83, 1984–1993 (2011)CrossRefGoogle Scholar
  14. 14.
    T. Klaus, C. Vollmer, K. Werner, H. Lehmann, K. Müschen, Energieziel 2050: 100% Strom aus erneuerbaren Quellen (Federal Environment Agency, Dessau, Germany, 2010)Google Scholar
  15. 15.
    Waidhas, M, Dynamic electrolysis for grid surplus and frequency control. Presentation at the Dechema Kolloqium “Wind to Gas” Frankurt, 7 March 2013Google Scholar
  16. 16.
  17. 17.
    F. Dormen, C. Pauly, G. Traufetter, Der Spiegel 22/2013, p. 74Google Scholar
  18. 18.
    German Renewably Energy Agency, Berlin, 2012Google Scholar
  19. 19.
    B. Lomborg, Der Spiegel 12/2013, pp. 122, 123Google Scholar
  20. 20.
    M. Specht, M. Sterner, F. Baumgart, B. Feigl, V. Frick, B. Stürmer, U. Zuberbühler, G. Waldstein, New routes for the Produktion of substitute natural gas (SNG) from renewable energy. FVEE Annual Meeting, Berlin, Germany, 2010Google Scholar
  21. 21.
  22. 22.
    H. Eilers, M. Iglesias Conzalez, G. Schaub, in Chemical Storage of Electricity in hydrocarbon Fuels. Reducing the Carbon footprint of fuels and petrochemicals, DGMK Conference, Berlin, 8–10 October 2012Google Scholar
  23. 23.
    M. Waidhas, Dynamic Electrolysis for Grid Surplus and Frequency Control, DECHEMA Kolloquium Wind-to-Gas, Frankfurt, 7.3.2013, 2013Google Scholar
  24. 24.
    T. Smolinka, M. Günther, J. Garche, Stand und Entwicklungspotenzial der Wasserelektrolyse zur Herstellung von Wasserstoff aus regenerativen Energien, Fraunhofer ISE/FCBAT (2011) (http://www.now-gmbh.de/fileadmin/user_upload/RE-Mediathek/RE_Publikationen_NOW/NOW-Studie-Wasserelektrolyse-2011.pdf), Berlin, 2010
  25. 25.
    DVGW-Arbeitsblatt G 262; Nutzung von Gasen aus regenerativen Quellen in der öffentlichen Gasversorgung. ISSN 0176-3490,2004Google Scholar
  26. 26.
    T. Kolb, Power-to-Gas (PtG), ein Baustein des künftigen Energiesystems. DECHEMA Kolloquium Wind-to-Gas, Frankfurt, 07 March 2013Google Scholar
  27. 27.
    B. Müller, K. Müller, D. Techmann, W. Arlt, Chem. Ing. Tech. 83, 2002–2013 (2011)CrossRefGoogle Scholar
  28. 28.
    BDEW, Energiemarkt Deutschland—Zahlen und Fakten zur Gas-,Strom- und Fernwärmeversorgung, 2010Google Scholar
  29. 29.
    Crotingo et al., 18 World Hydrogen Energy Conference, Essen, Germany, 2010Google Scholar
  30. 30.
  31. 31.
    Saur et al., Wind-Hydrogen Project: Electrolyser Capital—Cost Study. Technical Report, National Renewable Energy laboratory, Golden, CO, 2008Google Scholar
  32. 32.
    W.C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S.M. Haile, A. Steinfeld, Science 330, 1797–1801 (2010)CrossRefGoogle Scholar
  33. 33.
    P. Sabatier, J. Senderens, Acad. Sci. 134, 514–516 (1902)Google Scholar
  34. 34.
    S. Rieke, Energ. Wasser Prax. 9, 66–72 (2010)Google Scholar
  35. 35.
    R. Grünwald, M. Ragwitz, F. Sensfuß, J. Winkler, Regenerative Energieträger zur Sicherung der Grundlast in der Stromversorgung. Office of Technology Assessment (TAB) at the German Parliament, Berlin, 2012Google Scholar
  36. 36.
    H. Krause, G. Müller-Syring, Integration von Wasserstoff in das Erdgasnetz. Power-to-gas—die Energiespeicherung der Zukunft. 4. Sächsischer Brennstoffzellentag, Leipzig, 2011Google Scholar
  37. 37.
    G. Müller-Syring, M. Henel, Power-to-gas, Ein Beitrag zur Energiewende. Technik-Dialog der Bundesnetzagentur, Schwerpunkt Speichertechnologien, Bonn, 16.März 2012Google Scholar
  38. 38.
    M. Sterner, Ph.D. thesis, Universität Kassel, 2009Google Scholar
  39. 39.
    T. Amon, B. Amon, V. Kryvoruchko, A. Machmüller, K. Hopfner-Sixt, V. Bodiroza, R. Hrbek, J. Friedel, E. Pötsch, H. Wagentristl, M. Schreiner, W. Zollitsch, Biores. Technol. 98, 3204–3212 (2007)CrossRefGoogle Scholar
  40. 40.
    J. Hill, Agron. Sustain. Dev. 27, 1–12 (2007)CrossRefGoogle Scholar
  41. 41.
    R. Rathmann, A. Szklo, R. Schaeffer, Renew. Energy 35, 14–22 (2010)CrossRefGoogle Scholar
  42. 42.
    B. Wenzel, J. Nitsch, Langfristscenarien und Strategien für den Ausbau erneuerbarer Energien in Deutschland. Entwicklung der EEG-Vergütung, EEG- Differenzkosten und EEG-Umlage bis 2030. On behalf of the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, Teltow, Stuttgart, 2010Google Scholar
  43. 43.
    G.A. Olah, A. Goeppert, G.K. Surya Prakash, Beyond Oil and Gas: The Methanol Economy (Wiley-VCH, Weinheim, 2006)Google Scholar
  44. 44.
    C.N.K. Kumar, K. Tran, O.F. Sigurbjornsson, J. Whitlow, K. Alexander, WO2011061764, 2011Google Scholar
  45. 45.
    K. Tran, P. Wuebben, Vision of Renewable Methanol in the EU: Milestones and Timeline. Methanol Forum 2012, 29.09.2012, Houston, Texas, 2012Google Scholar
  46. 46.
    Landsvirikjun Corp., Press release, 23 Dec 2010Google Scholar
  47. 47.
    S. Bajohr, M. Götz, F. Graf, T. Kolb, Gas/Erdgas 153, 328–335 (2012)Google Scholar
  48. 48.
    F. Pontzen, W. Liebner, V. Gronemann, M. Rothaemel, B. Ahlers, Catal. Today 171, 242–250 (2011)CrossRefGoogle Scholar
  49. 49.
    Data from Lurgi AG, personal communication, 2013Google Scholar
  50. 50.
    W. Seuser, G. Harzfeld, G. Balzer, E. Harzfeld, in Fachhochschule Stralsund. Windpower to Cernol- a hydrogen storage technology, Presentation at the Conference: Understanding Reality-Facing Challenges-Creating Future, Brussels, 24.November 2011Google Scholar
  51. 51.
  52. 52.
    Data from Erdgasverdichterstation Mallnow, Oberhausen, MAN Turbo AG, personal communication, 2009Google Scholar
  53. 53.
    VDB Verband der Bahnindustrie, Zahlen und Fakten: Bahnindustrie, 2010Google Scholar
  54. 54.
    G.E. Herdin, Increasing Gas Engine Effiency (World Energy Engineering Congress, Atlanta, 2000)Google Scholar
  55. 55.
    B.J. Bowers, J.L. Zhao, M. Ruffo, R. Khan, D. Dattatraya, N. Dushman, J. Beziat, F. Boudjemaa, Int. J. Hydr. Energy 32, 1437–1442 (2007)CrossRefGoogle Scholar
  56. 56.
    M. Müller, Regenerative Fuel Cells, in Fuel Cell Science and Engineering, vol. 2, ed. by D. Stolten, B. Emonts (Wiley-VCH, Weinheim, 2012), pp. 219–245CrossRefGoogle Scholar
  57. 57.
    N. Hotz, M. Lee, C.P. Grigoropoulos, S.M. Senn, D. Poulikakos, Int. J. Heat Mass Transfer 49, 2397–2411 (2006)CrossRefGoogle Scholar
  58. 58.
  59. 59.
    H. Ghanbari, M. Helle, H. Saxén, Chem. Eng. Process. Process Intens. 61, 58–68 (2012)CrossRefGoogle Scholar
  60. 60.
    G.H. Shiomoto, D.E. Shore, Methanol Clean Coal Stationary Engine Demonstration Project. Executive Summary. California Energy Commision Report P500-86-004, 1986Google Scholar
  61. 61.
    G. Hagan, S. Cochrane, HCN Market Research Report (TLA Process Technologies, Miami, 1998)Google Scholar
  62. 62.
    Carbon-Clean Technologies AG, DE202010012734, 2012Google Scholar
  63. 63.
    M. Beckmann, C. Pieper, R. Scholz, M. Muster, Wasser und Abfall 14(7–8), 47–55 (2012)CrossRefGoogle Scholar
  64. 64.
    M. Beckmann, C. Pieper, R. Scholz, M. Muster, Wasser und Abfall 14(9), 20–27 (2012)Google Scholar
  65. 65.
    M. Sterner, M. Jentsch, Energiewirtschaftliche und ökologische Bewertung eines Windgasangebots, Fraunhofer Institut für Windenergie und Energiesystemtechnik (IWES), Kassel, 2011Google Scholar
  66. 66.
    Frankfurter Allgemeine Zeitung, Der unheimliche Erfolg der Energiewende. 21 Feb 2013Google Scholar
  67. 67.
    Frankfurter Allgemeine Zeitung, Stromexporteur Deutschland vervierfacht Überschuss. 03 Apr 2013Google Scholar
  68. 68.
    Frankfurter Allgemeine Zeitung, Erdgassubstitut aus dem Bioreaktor, 04 Dec 2012Google Scholar
  69. 69.
    J. Nitsch, T. Pregger, Y. Scholz, T. Naegler, M. Sterner, N. Gerhardt, A. von Oehsen, C. Pape, Y.-M. Saint-Drenan, B. Wenzel, Langzeitszenarien und Strategien für den Ausbau der erneuerbaren Energien, in Deutschland bei Berücksichtigung der Entwicklung in Europa und global. “Leitstudie 2010”, German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, Berlin, 2010Google Scholar
  70. 70.
    M. Sterner, N. Gerhardt, M. Jentsch, M. Specht, B. Stürmer, U. Zuberbühler, Perspektiven des Energieträgers Methan. Methan aus Solar-und Windenergie, Solarzeitalter, 01/2010, Eurosolar, BerlinGoogle Scholar
  71. 71.
    T. Molinka, M. Günther, J. Garche, Stand und Entwicklungspotential der Wasserelektrolyse zur Herstellung von Wasserstoff aus regenerativen Energien. Kurzfassung des Abschlussberichts. NOW–Studie Fraunhofer ISE, 5 July 2011Google Scholar
  72. 72.
    A. Tremel, M. Walz, M. Baldauf, in Use Case Analysis for CO 2 -based Renewable Fuels. 3rd International Conference on Energy Process Engineering, Frankfurt, Germany, 4-6 June 2013Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ludolf Plass
    • 1
    Email author
  • Martin Bertau
    • 2
  • Matthias Linicus
    • 3
  • Ringo Heyde
    • 2
  • Eric Weingart
    • 2
  1. 1.KronbergGermany
  2. 2.Institute of Chemical TechnologyFreiberg University of Mining and TechnologyFreibergGermany
  3. 3.Air Liquide Global E&C Solutions c/o Lurgi GmbHFrankfurtGermany

Personalised recommendations