Skip to main content

Methanol Utilisation Technologies

Abstract

Oil and gas are raw materials—the availability of which is prognosticated to run short in the near future. The peak oil discussion is an example generally perceived as proof of this development to come.

Keywords

  • Direct Methanol Fuel Cells (DMFC)
  • Tert-amyl Methyl Ether (TAME)
  • Fuel Cell
  • DMFC System
  • Methanol Steam Reforming

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-39709-7_6
  • Chapter length: 275 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-39709-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 6.1
Fig. 6.2
Fig. 6.3
Fig. 6.4
Fig. 6.5
Fig. 6.6
Fig. 6.7
Fig. 6.8
Fig. 6.9
Fig. 6.10
Fig. 6.11
Fig. 6.12
Fig. 6.13
Fig. 6.14
Fig. 6.15
Fig. 6.16
Fig. 6.17
Fig. 6.18
Fig. 6.19
Fig. 6.20
Fig. 6.21
Fig. 6.22
Fig. 6.23
Fig. 6.24
Fig. 6.25
Fig. 6.26
Fig. 6.27
Fig. 6.28
Fig. 6.29
Fig. 6.30
Fig. 6.31
Fig. 6.32
Fig. 6.33
Fig. 6.34
Fig. 6.35
Fig. 6.36
Fig. 6.37
Fig. 6.38
Fig. 6.39
Fig. 6.40
Fig. 6.41
Fig. 6.42
Fig. 6.43
Fig. 6.44
Fig. 6.45
Fig. 6.46
Fig. 6.47
Fig. 6.48
Fig. 6.49
Fig. 6.50
Fig. 6.51
Fig. 6.52
Fig. 6.53
Fig. 6.54
Fig. 6.55
Fig. 6.56
Fig. 6.57
Fig. 6.58
Fig. 6.59
Fig. 6.60
Fig. 6.61
Fig. 6.62
Fig. 6.63
Fig. 6.64
Fig. 6.65
Fig. 6.66
Fig. 6.67
Fig. 6.68
Fig. 6.69
Fig. 6.70
Fig. 6.71
Fig. 6.72
Fig. 6.73
Fig. 6.74
Fig. 6.75
Fig. 6.76
Fig. 6.77
Fig. 6.78
Fig. 6.79
Fig. 6.80
Fig. 6.81
Fig. 6.82
Fig. 6.83
Fig. 6.84
Fig. 6.85
Fig. 6.86
Fig. 6.87
Fig. 6.88
Fig. 6.89
Fig. 6.90
Fig. 6.91
Fig. 6.92
Fig. 6.93
Fig. 6.94
Fig. 6.95
Fig. 6.96
Fig. 6.97
Fig. 6.98
Fig. 6.99
Fig. 6.100
Fig. 6.101
Fig. 6.102
Fig. 6.103
Fig. 6.104
Fig. 6.105
Fig. 6.106
Fig. 6.107
Fig. 6.108
Fig. 6.109
Fig. 6.110
Fig. 6.111
Fig. 6.112
Fig. 6.113
Fig. 6.114
Fig. 6.115
Fig. 6.116
Fig. 6.117
Fig. 6.118
Fig. 6.119
Fig. 6.120
Fig. 6.121
Fig. 6.122
Fig. 6.123
Fig. 6.124
Fig. 6.125
Fig. 6.126
Fig. 6.127
Fig. 6.128
Fig. 6.129
Fig. 6.130
Fig. 6.131
Fig. 6.132
Fig. 6.133
Fig. 6.134
Fig. 6.135
Fig. 6.136
Fig. 6.137
Fig. 6.138
Fig. 6.139
Fig. 6.140
Fig. 6.141
Fig. 6.142
Fig. 6.143
Fig. 6.144
Fig. 6.145
Fig. 6.146
Fig. 6.147
Fig. 6.148
Fig. 6.149
Fig. 6.150

References

  1. K.S. Deffeyes, Hubbert’s Peak: The Impending World Oil Shortage (Princeton University Press, Princeton, 2011)

    Google Scholar 

  2. M.K. Hubbert, Drill. Prod. Prac. 7–25 (1956)

    Google Scholar 

  3. R.W. Bentley, Energ. Policy 30, 189–205 (2002)

    Google Scholar 

  4. S. Sorrell, J. Speirs, R. Bentley, A. Brandt, R. Miller, Energ. Policy 38, 5290–5295 (2010)

    Google Scholar 

  5. D. Zhu, S. Tao, R. Wang, H. Shen, Y. Huang, G. Shen, B. Wang, W. Li, Y. Zhang, H. Chen, Y. Chen, J. Liu, B. Li, X. Wang, W. Liu, Appl. Energ. 106, 17–24 (2013)

    Google Scholar 

  6. New York Times, 13.11.2012

    Google Scholar 

  7. R. Bacon, S. Tordo, Crude Oil Price Differentials and Differences in Oil Qualities: A Statistical Analysis (Energy and Water Department, Washington, D.C., 2005). Can be found under http://www.esmap.org/sites/esmap.org/files/08105.TechnicalPaper_CrudeOilPriceDifferentialsandDifferencesinOilQualitiesAStatisticalAnalysis.pdf

  8. B. Höhlein, P. Biedermann, T. Grube, Methanol as an Energy Carrier, Schriften des Forschungszentrums Jülich- Reihe Energietechnik/Energy Technology (2006)

    Google Scholar 

  9. G.A. Olah, A. Goeppert, G.K.S. Prakash, Beyond Oil and Gas: The Methanol Economy (Wiley-VCH, Weinheim, 2006)

    Google Scholar 

  10. A. Kuhlmann, H. May, F.G. Pischinger, Methanol und Wasserstoff: Automobil-Kraftstoffe der Zukunft (Verlag TÜV, Rheinland, 1976)

    Google Scholar 

  11. A. Kowalewicz, M. Wojtyniak, Proc. Inst. Mech. Eng., Part D: J. Automobile Eng. 219, 103–125 (2005)

    Google Scholar 

  12. Methanol Institute, Methanol Gasoline Blends: Alternative Fuel For Today’s Automobiles and Cleaner ‘Burning Octane For Today’s Oil Refinery. Can be found under http://www.methanol.org/Energy/Transportation-Fuel/Fuel-Blending-Guidelines/Blenders-Product-Bulletin-(Final).aspx (2011)

  13. L. Bromberg, W.K. Cheng, Methanol as an Alternative Transportation Fuel in the US: Options for Sustainable and/or Energy-Secure Transportation (2010), can be found under http://www.afdc.energy.gov/pdfs/mit_methanol_white_paper.pdf

  14. Methanol Institute, Methanol Transportation Fuel (2011), can be found unter http://www.methanol.org/Energy/Transportation-Fuel.aspx

  15. C. Duwig, P. Gabrielson, H. Nielsen, Haldor Topsøe A/S presentation at Marine Days, Gothenburg (2011)

    Google Scholar 

  16. P.L. Spath, D.C. Dayton, Preliminary Screening: Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass-Derived Syngas (2003), can be found under http://www.nrel.gov/docs/fy04osti/34929.pdf

  17. A.B. Chemrec, Press release from 09.09.2010 (2010)

    Google Scholar 

  18. DIN EN 590, Kraftstoffe für KraftfahrzeugeDieselkraftstoffAnforderungen und Prüfverfahren (Beuth, 2011)

    Google Scholar 

  19. Statista GmbH, Global biofuel production from 2000 to 2011 (2013), can be found under http://www.statista.com/statistics/198866/global-biofuel-production–production-in-oil-equivalent-since-2000/

References to Section 6.2

  1. F. Asinger, MethanolChemie- und Energierohstoff. Die Mobilisation der Kohle, 1. Aufl. (Springer, Heidelberg, 1986)

    Google Scholar 

  2. H.J. Arpe, Industrielle Organische Chemie: Bedeutende Vor- und Zwischenprodukte, 6. Aufl. (Wiley-VCH, Weinheim, 2007)

    Google Scholar 

  3. D. Steinborn, Grundlagen der metallorganischen Komplexkatalyse, 2. Aufl. (Vieweg + Teubner, Wiesbaden, 2009)

    Google Scholar 

  4. N. Rizkalla (Halcon International), DE 2610036, 1976

    Google Scholar 

  5. R.V. Porcelli, V.S. Bhise (Halcon International), DE 3024353, 1981

    Google Scholar 

  6. G. Luft, G. Ritter, M. Schrod, Chem. Ing. Tech. 54, 750–760 (1982)

    Google Scholar 

  7. C. Hewlett (Halcon International), DE 2441502, 1975

    Google Scholar 

  8. C. Elschenbroich, Organometallchemie, 6. Aufl. (Vieweg + Teubner, Wiesbaden, 2008)

    Google Scholar 

  9. D.L. King, J.A. Cusumano, R.L. Garten, Cat. Rev. Sci. Eng. 23, 233–263 (1981)

    Google Scholar 

  10. S. Rebsdat, D. Mayer, Ethylene glycol. In: Ullmann’sEncyclopedia of Industrial Chemistry, 7th edn. (Wiley-VCH, Weinheim, 2012), pp. 531–546

    Google Scholar 

  11. T. Ikarashi, Chem. Econ. Eng. Rev. 12, 31–34 (1980)

    Google Scholar 

  12. H.F. Willkie (US Industrial Alcohol Co.), US 1400195, 1921

    Google Scholar 

  13. Companie de Béthune, F.P. 673.051, 1929

    Google Scholar 

  14. Mitsubishi Gas Chemical Co., Japan. Pat. 15, 3068–766 (1978)

    Google Scholar 

  15. Mitsubishi Gas Chemical Co., Japan. Pat. 15, 3108–916 (1978)

    Google Scholar 

  16. Mitsubishi Gas Chemical Co., Japan. Pat. 46.821 (1978)

    Google Scholar 

  17. Mitsubishi Gas Chemical Co., GB 1546004, 1979

    Google Scholar 

  18. A. Aguilo, T. Horlenko, Hydrocarbon Process 142, 120–130 (1980)

    Google Scholar 

  19. M. Ioneoka (Mitsubishi Gas Chemical Co.), DE 2716842, 1977

    Google Scholar 

  20. S. Jali, H.B. Friedrich, G.R. Julius, J. Mol. Catal. A: Chem. 348, 63–69 (2011)

    Google Scholar 

  21. J.S. Lee, J.C. Kim, Y.G. Kim, Appl. Catal. 57, 1–30 (1990)

    Google Scholar 

  22. F. Mathé, Y. Castenet, A. Mortreux, F. Petit, Tetrahedron Lett. 32, 3989–3992 (1991)

    Google Scholar 

  23. Mitsubishi Gas Chemical Co., Japan. Pat. 30.253 (1973)

    Google Scholar 

  24. M. Fontaine, Y. Castanet, A. Mortreux, F. Petit, J. Catal. 167, 324–336 (1997)

    Google Scholar 

  25. G. Jenner, Appl. Catal. A: Gen. 121, 25–44 (1995)

    Google Scholar 

  26. K. Kondo, N. Sonoda, H. Sakurai, Tetrahedron Lett. 15, 803–804 (1974)

    Google Scholar 

  27. P. Pennequin, M. Fontaine, Y. Castanet, A. Mortreux, F. Petit, Appl. Catal. A: Gen. 135, 329–339 (1996)

    Google Scholar 

  28. S. Otsuka, A. Nakaruma, T. Yoshida, M. Namto, K. Atato, J. Am. Chem. Soc. 95, 3180–3188 (1973)

    Google Scholar 

  29. G. Jemier, E.M. Nahmed, S. Libs-Konrath, J. Mol. Catal. 64, 337–347 (1991)

    Google Scholar 

  30. http://en.wikipedia.org/wiki/Formic_acid

  31. V.V. Gercev, J.J. Markov-Zemljanski, J. Angew. Chem. (UdSSR) 43, 1633–1635 (1970)

    Google Scholar 

  32. Anonymous, Chem. Eng. News 48(28), 24 (1970)

    Google Scholar 

  33. A.H. Hanson (A.B. Perstorp), SE 331990, 1971

    Google Scholar 

  34. L.J. Kaplan, Chem. Eng. 71–73 (1982)

    Google Scholar 

  35. J. Menzel (Uhde GmbH), EP 2010056154, 2010

    Google Scholar 

  36. G. Wietzel, K. Eder, A. Scheuermann (BASF AG), DRP 867.849, 1953

    Google Scholar 

  37. M. Jahrsdorfer, G. Schwerte (BASF AG), DE 7414, 1941

    Google Scholar 

  38. K. Pieroh (BASF AG), DRP Anm. J. 69072 (1941)

    Google Scholar 

  39. M. Müller, U. Hübsch, Dimethyl ether, in Ullmann’sEncyclopedia of Industrial Chemistry, vol. 11, 7th edn. (Wiley-VCH, Weinheim, 2011), pp. 305–308

    Google Scholar 

  40. G. Reuss, W. Disteldorf, A. O. Gamer, A. Hilt, Formaldehyde. In: Ullmann’sEncyclopedia of Industrial Chemistry, 7th edn., 2012, Wiley-VCH, Weinheim, p. 735–768

    Google Scholar 

  41. http://www.icis.com/v2/chemicals/9076013/formaldehyde/uses.html, 2010

  42. E. Jones, G.G. Fowlie, J. Appl. Chem. 3, 206–213 (1953)

    Google Scholar 

  43. V.N. Gavrilin, B.I. Popov, Kinet. Catal. (Engl. Transl.) 6, 799-803 (1965)

    Google Scholar 

  44. H. Schubert, U. Tegtmeyer, R. Schlögl, Catal. Lett. 28, 383–395 (1994)

    Google Scholar 

  45. H. Schubert, U. Tegtmeyer, D. Herein, X. Bao, Muhler M, R. Schlögl, Catal. Lett. 33, 305–319 (1995)

    Google Scholar 

  46. G.J. Millar, J.B. Metson, G.A. Bowmaker, R.P. Cooney, J. Chem. Soc., Faraday Trans. 91, 4149–4159 (1995)

    Google Scholar 

  47. H. Sperber, Titel. Chem. Ing. Tech. 41, 962–966 (1969)

    Google Scholar 

  48. H.B. Uhl, I.H. Cooper, Heyden Chem. Corp., US 2465498, 1949

    Google Scholar 

  49. G. Halbritter et al. (BASF AG), DE 2442231, 1978

    Google Scholar 

  50. A. Aicher, G. Lehmann, N. Petri, W. Pitteroff, G. Reuss, H. Schreiber, R. Sebastian (BASF AG), EP 0150436 (1985)

    Google Scholar 

  51. A. Aicher, H. Haas, H. Sperber, H. Diem, G. Matthias, G. Lehmann (BASF AG), DE 2322757 (1974)

    Google Scholar 

  52. A. Aicher, H. Haas, H. Diem, C. Dudeck, F. Brunnmüller, G. Lehmann (BASF AG), DE 2655321 (1978)

    Google Scholar 

  53. H. Diem, A. Aicher, H. Haas, C. Dudeck, F. Finkbeiner (BASF AG), DE 2444586 (1976)

    Google Scholar 

  54. Anonymous, Chem. Week, 105, 79 (1969)

    Google Scholar 

  55. D.G. Sleemann, Chem. Eng. N.Y., 75, 42–44 (1968)

    Google Scholar 

  56. M. Weimann, Chem. Eng. N.Y., 77, 102–104 (1970)

    Google Scholar 

  57. A. Chauvel, P. Courty, R. Maux, C. Petitpas, Hydrocarbon Process 135, 179–184 (1973)

    Google Scholar 

  58. J.H. Marten, M.T. Butler, Oil Gas J. 72, 71–72 (1974)

    Google Scholar 

  59. FR000001487093A (2013), download from: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=pdf&docid=

  60. W.A. Payne (Du Pont), US 2519788, 1950

    Google Scholar 

  61. E.S. Northeimer (Du Pont), US 3959383, 1976

    Google Scholar 

  62. G.L. Kiser, B.G. Hendricks (Du Pont), US 4 076 754, 1978

    Google Scholar 

  63. W.B. Meath (Allied Chemical and Dye Corp.), US 2462413, 1949

    Google Scholar 

  64. G.C. Bailey, A.E. Craver (Barrett Comp.), US 1383059, 1921

    Google Scholar 

  65. V.E. Meharg, H. Adkins (Bakelite Corp.), US 1913405, 1933

    Google Scholar 

  66. F. Traina (Montecatini), US 3198753, 1965

    Google Scholar 

  67. S.A. Bergstrand(Perstorp AB), GB 1 080 508, 1967

    Google Scholar 

  68. G.D. Kolovertnov, G.K. Boreskov, V.A. Dzisko, B.I. Popov,. D.V. Tarasova, G.C. Belugina, Kinet. Catal./Engl. (Transl.), 6, 950–954 (1965)

    Google Scholar 

  69. G.D. Kolovertnov, G.K. Boreskov, L.M. Kefeli, L.M. Plyasova, L.G. Karakchiev, V.N. Mastikin, V.I. Popov, V.A. Dzisko, V.D. Tarasova, Kinet. Catal./Engl. (Transl.), 7, 125–130 (1966)

    Google Scholar 

  70. T.S. Hodgins, F.J. Shelton (Reichhold Chemicals), US 2 973 326, 1961

    Google Scholar 

  71. J.J. Hukki, E.J. Honkanen (Laeaeketehdas Orion Oy), CH 392484, 1961

    Google Scholar 

  72. P. Jiru, B. Wichter1ova, J. Tichy, in Proceedings of 3rd International Congress Catalysis, Amsterdam, vol. 1, 1965, pp. 199–213

    Google Scholar 

  73. M. Dente, R. Poppi, I. Pasquon, Chim. Ind. (Milan) 46, 1326–1336 (1964)

    Google Scholar 

  74. M. Dente, I. Pasquon, Chim. Ind. (Milan) 47, 359–367 (1965)

    Google Scholar 

  75. M. Dente, A. Collina, Chim. Ind. (Milan) 47, 821–829 (1965)

    Google Scholar 

  76. W.F. Brondyke, J.A. Monier (Du Pont), US 2 436 287, 1948

    Google Scholar 

  77. W.F. Brondyke, J.A. Monier (Du Pont) GB 589 292, 1947

    Google Scholar 

  78. Anonymus, Chem. Eng. N.Y. 61, 109–110 (1954)

    Google Scholar 

  79. Anonymus, Chem. Process Eng. (London) 51, 100–111 (1970)

    Google Scholar 

  80. C.M. Sze (Lummus Comp.), US 3 277 179, 1966

    Google Scholar 

  81. A.W. Gessner (Lummus Comp.), US 3408309, 1968

    Google Scholar 

  82. G. Greco, U. Soldano, Chem. Ing. Tech. 31, 761–765 (1959)

    Google Scholar 

  83. W. Exner, Chem. Anlagen + Verfahren, pp. 87–92 (1973)

    Google Scholar 

  84. G. Sextro, Polyoxymethylenes, in Ullmann’sEncyclopedia of Industrial Chemistry, vol. 29, 7th edn. (Wiley-VCH, Weinheim, 2011), pp. 367–379

    Google Scholar 

  85. M. Heym, Angew. Makromol. Chem. 244, 67–92 (1997)

    Google Scholar 

  86. H. Staudinger, M. Lüthy, Helv. Chim. Acta 8, 41–64 (1925)

    Google Scholar 

  87. H. Staudinger, H. Johner, R. Signer, G. Mie, J. Hengstenberg, Z. Phys. Chem. 126, 425–448 (1927)

    Google Scholar 

  88. H. Staudinger, R. Signer, H. Johner, M. Lüthy, W. Kern, D. Rusidis, O. Schweitzer, Liebigs Ann. Chem. 474, 145–275 (1929)

    Google Scholar 

  89. H. Staudinger, R. Sieger, Z. Kristallogr, Mineralog. Petrogr. A 70, 193 (1929)

    Google Scholar 

  90. (Du Pont), FP 1082519, 1954

    Google Scholar 

  91. M.F. Bechtold, K. Square, R.N. Macdonald (Du Pont), BE 558693, 1957

    Google Scholar 

  92. R.N. Macdonald (Du Pont), DE 1037705, 1958

    Google Scholar 

  93. D.L. Funck, (Du Pont), DE 1057086, 1959

    Google Scholar 

  94. D.L. Funck, (Du Pont), DE 1090191, 1960

    Google Scholar 

  95. R.N. Macdonald, (DuPont), DE 1037705, 1958

    Google Scholar 

  96. W. Kern, H. Cherdron, V. Jaacks, Angew. Chem. 73, 177–186 (1961)

    Google Scholar 

  97. S. Nogare, J.O. Punderson, S.H.J. Jun, F.C. Starr, W. Jun, G.S. Stamatoff, (Du Pont), DE 1223551, 1966

    Google Scholar 

  98. H. Amann, E. Baeder, (Degussa), DE 2003270, 1971

    Google Scholar 

  99. J. Hagimory, E. Kitajima, (Tsukamoto Sogyo Co. Ltd.), DE 1964527, 1970

    Google Scholar 

  100. W. Thomson, F. Brown, B.K. William, J. Polly, W. George, (Celanese Corp.), DE 1420283, 1969

    Google Scholar 

  101. W. Kern, V. Jaacks, (Degussa), DE 1194145, 1965

    Google Scholar 

  102. V. Jaaks, W. Kern, Makromol. Chem. 83, 71–79 (1965)

    Google Scholar 

  103. M.A. Pacheco, C.L. Marshall, Energ. Fuels 11, 2–29 (1997)

    Google Scholar 

  104. D. Delledonne, F. Rivetti, U. Romano, Appl. Catal. A: Gen. 221, 241–251 (2001)

    Google Scholar 

  105. F. Rivetti, C.R. Acad. Sci. Paris, SerieIIc, Chem. 3, 497–503 (2000)

    Google Scholar 

  106. N. Keller, G. Rebmann, V. Keller, J. Mol. Catal. A: Chem. 317, 1–18 (2010)

    Google Scholar 

  107. H. Babab, A.G. Zeiler, Chem. Rev. 73, 75–91 (1973)

    Google Scholar 

  108. M. Matzner, R.P. Kurkjy, R.J. Cotter, Chem. Rev. 64, 645–656 (1964)

    Google Scholar 

  109. A. Shaikh, S. Sivaran, Chem. Rev. 96, 951–976 (1996)

    Google Scholar 

  110. J. Knifton, (Texaco Inc.), US 4661609, 1987

    Google Scholar 

  111. L. Cassar, Chim. Ind. Milan 72, 18–22 (1990)

    Google Scholar 

  112. U. Romano, R. Tesel, G. Cipriani, L. Micucci, (Anic S.p.a), US 4218391, 1980

    Google Scholar 

  113. U. Romano, F. Rivetti, (EnichemSintesi), EP 365083, 1988

    Google Scholar 

  114. H.-J. Buysch, Carbonic esters, in Ullmann’sEncyclopedia of Industrial Chemistry, vol. 7, 7th edn. (Wiley-VCH, Weinheim, 2011), pp. 45–71

    Google Scholar 

  115. F. Matsuda, K. Narita, H. Oikawa, Y. Okuda, T. Saito, Y. Takahashi, K. Ueno, K. Watanabe (Nippon Steel Corp.), EP 685453, 1995

    Google Scholar 

  116. M. Bertau, C. Pätzold, U. Singliar (TU Bergakademie Freiberg), DE 102007051072, 2007

    Google Scholar 

  117. K. Nagai, T. Ui, Sumitomo Kagaku (2), 1–12 (2004) (English translation)

    Google Scholar 

  118. Evonik Industries AG, Press release from 23.10.2009 (2009)

    Google Scholar 

  119. J. Burkhardt, in Symposium am 28 on Silicone Chemie und Technologie, April 1989 (Vulkan, Essen, 1989), pp. 23–27

    Google Scholar 

  120. H.-H. Moretto, M. Schulze, G. Wagner, Silicones, in Ullmann’s Encyclopedia of Industrial Chemistry, vol. 32, 7th edn. (Wiley-VCH, Weinheim, 2011), pp. 675–679

    Google Scholar 

  121. W. Kalchauer, B. Pachaly, Müller-Rochow synthesis: the direct process to methylchlorosilanes, in Ullmann’sEncyclopedia of Industrial Chemistry, vol. 32, 7th edn. (Wiley-VCH, Weinheim, 2011), pp. 2635–2641

    Google Scholar 

  122. H. Brauer, Handbuch des Umweltschutzes und der Umwelttechnik, vol. 2, Produktions- und produktintegrierter Umweltschutz, 1. Aufl. (Springer, Heidelberg, 1996), pp. 467–468

    Google Scholar 

  123. H. Gysin, E. Knuesli, (Geigy AG), CH 337019, 1959

    Google Scholar 

  124. W. Draber, K. Dichore, Naturwissenschaften 55, 446 (1968)

    Google Scholar 

  125. K. Westphal, W. Meiser, L. Fue, H. Hack, (Bayer AG), US 3671523, 1972

    Google Scholar 

  126. R. Schmidt, L. Eue, C. Metzger, K. Dickore, (Bayer AG), DE-OS 2407144, 1975

    Google Scholar 

  127. Degussa AG, Press release from 12.03.2003 (2003)

    Google Scholar 

  128. R. Dittmeyer, W. Keim, G. Kreysa, A. Oberholz (eds.) Winnacker-Küchler: Chemische Technik, vol. 5, 5th edn. (Wiley-VCH, Weinheim, 2006), p. 250

    Google Scholar 

  129. M. Fielding (Du Pont), US 3255075, 1966

    Google Scholar 

  130. K.-M. Roy, Thiols and organic sulfides, in Ullmann’sEncyclopedia of Industrial Chemistry, vol. 36, 7th edn. (Wiley-VCH, Weinheim, 2011), pp. 629–655

    Google Scholar 

  131. H.O. Folkins, E.L. Miller, Ind. Eng. Chem. Proc. Des. Dev. 1, 271–276 (1962)

    Google Scholar 

  132. B.J. Aungst, N.J. Rogers, Int. J. Pharm. 53, 227–235 (1989)

    Google Scholar 

  133. W. Qia, D. Dinga, R.J. Salvi, Hearing Res. 236, 52–60 (2008)

    Google Scholar 

  134. G. Da Violante, N. Zerrouk, I. Richard, G. Provot, J.C. Chaumeil, P. Arnaud, Biol. Pharm. Bull. 25, 1600–1603 (2002)

    Google Scholar 

  135. S.L. Moskowitz, Methanol, in Kirk-Othmer Concise Encyclopedia of Chemical Technology, vol. 2, 5th edn. (Wiley, New York, 2007), pp. 1006–1009

    Google Scholar 

  136. M. Liauw, T. Prinz, H.-M. Weber, A. Reitzmann, Aromatische Zwischenprodukte, in Winnacker-Küchler, Chemische Technik, eds. by R. Dittmeyer, W. Keim, G. Kreysa, A. Oberholz, vol. 5, 5th edn. (Wiley-VCH, Weinheim, 2005), pp. 374–375

    Google Scholar 

  137. T. Ren, M.K. Patel, K. Blok, Energy 33, 817–833 (2008)

    Google Scholar 

  138. Directive 2003/30/EG of the European Parliament and Council from 8 May 2003 for the promotion of biofuels or other renewable fuels in traffic (2003)

    Google Scholar 

  139. P. Fairly, Taking pulp to the pump, download from: http://www.technologyreview.com/news/411363/taking-pulp-to-the-pump/?a=f, 2008

  140. F. Pontzen, W. Liebner, V. Gronemann, M. Rothaemel, B. Ahlers, Catal. Today 171, 242–250 (2011)

    Google Scholar 

  141. B. Ahlers, G. Birke, H. Kömpel, H. Bach, M. Rothaemel, W. Liebner, W. Boll, V. Gronemann, (Lurgi AG) WO2010/060566 A1, 2010

    Google Scholar 

  142. G. Pagani, (SnamProgetti), DE 2362944, 1974

    Google Scholar 

  143. GESTIS Data Base, Natriummethanolat

    Google Scholar 

  144. F.A. Carey, R.J. Sundberg, Organic Chemistry, 1. Aufl. (Wiley-VCH, Weinheim, 1995)

    Google Scholar 

  145. N. Wiberg, E. Wiberg, Lehrbuch der Anorganischen Chemie, 102. Aufl. (de Gruyter, Berlin, 2007)

    Google Scholar 

  146. P. Lamers, Market study biodiesel, Fuels of the Future, Berlin, 23.-24.01.2012 (2012)

    Google Scholar 

  147. S.W. Tse, US 1697 H 19971104

    Google Scholar 

  148. W. Shunkwok, US H001697, 1997

    Google Scholar 

  149. C.H. Hamann, P. Schmittinger, (Huels Chemische Werke AG), EP 0810193, 1997

    Google Scholar 

  150. H.-J. Sterzel, D. Schläfer, J. Guth, H. Friedrich, P. Zehner, (BASF AG), EP 1195369, 2002

    Google Scholar 

  151. A. Qwczarek (Inst. Tech. Elektronowej), PL 211292, 1979

    Google Scholar 

  152. R. Auschner, P. Schmittinger, S. Rudolf, (Dynamit Nobel AG), EP 0177768, 1986

    Google Scholar 

  153. J. Ruwwe, K.-M. Krüger, U. Knippenberg, V. Brehme, M. Neumann, (Evonik Degussa GmbH), EP 1997794, 2008

    Google Scholar 

References to Section 6.3

  1. K. Weidmann, Alternative Kraftstoffe für Dieselmotoren, Essen, 1985

    Google Scholar 

  2. H. Menrad, Wenpo Lee, W. Bernhardt, SAE-770790, 1977

    Google Scholar 

  3. B. Nierhauve, G. Seidel, H. Menrad, BMFT-Study Voraussetzung für die Einführung von Alkoholkraftstoffen (TÜV Rheinland, Köln, 1983)

    Google Scholar 

  4. H. Menrad, B. Nierhauve, SAE-831686, 1983

    Google Scholar 

  5. K. Weidmann, H.Menrad, SAE-841331, 1984

    Google Scholar 

  6. K. Weidmann, H. Menrad, MTZ 46, 373 (1985)

    Google Scholar 

  7. G. Decker, Personal communication (2012)

    Google Scholar 

  8. P. Kuirun, Z. Hua, Y. Yun et al., in IX International symposium on alcohol fuels, Firenze, 1991, p. 768

    Google Scholar 

  9. U. Hilger, G. Jain, F. Pischinger et al., in IX International symposium on alcohol fuels, Firenze, 1991, p. 479

    Google Scholar 

  10. K. Hikino, T. Suzuki, S. Uematsu, in IX International symposium on alcohol fuels, Firenze, 1991, p. 485

    Google Scholar 

  11. G. Decker, H. Heinrich, U. Kammann, in IX International symposium on alcohol fuels, Firenze, 1991, p. 501

    Google Scholar 

  12. F. Pischinger, E. Scheid, U. Hilger, G. Schmitz (FEV Motorentechnik GmbH & Co. KG), DE 3843243 C2, 1988

    Google Scholar 

  13. L. Brabetz, M. Siedentop, G. Schmitz, in IX International symposium on alcohol fuels, Firenze, 1991, p. 552

    Google Scholar 

  14. Siemens Automotive Company, Flexible Fuel Sensing Technology (2006)

    Google Scholar 

  15. J. van der Weide, H.J. Dekker, A. de Voogd, in IX International symposium on alcohol fuels, Firenze, 1991, p. 509

    Google Scholar 

  16. K. Kollmann, J. Abthoff, D. Hüttebräucker, IX International symposium on alcohol fuels, Firenze, p. 518

    Google Scholar 

  17. Y-G. Shin, S.–S. Hwang, H-S. Lee, in IX International symposium on alcohol fuels, Firenze, 1991, p. 526

    Google Scholar 

  18. T. Suga, S. Kitajima, Y. Hamazaki, in IX International symposium on alcohol fuels, Firenze, 1991, p. 532

    Google Scholar 

  19. H. Nohira, S. Kudo, Y Tsukasaki et al., in IX International symposium on alcohol fuels, Firenze, 1991, p. 538

    Google Scholar 

  20. M. Namba, T. Yokohama, K. Iida et al., in IX International symposium on alcohol fuels, Firenze, 1991, p. 546

    Google Scholar 

  21. Research and Markets, Impact of Alternative Fuels: Fuel Lines, Seals and Injectors, Dublin (2011)

    Google Scholar 

  22. H. Menrad, M. Haselhorst, W. Erwig SAE-821210, 1982

    Google Scholar 

  23. P. Dedl, P.Hofmann, B. Geringer et al., 13th Symposium on the working process of the internal combustion engine, Graz, 2011

    Google Scholar 

  24. F. Pischinger, P. Burghardt, Cornelis Havenith, SAE-830552, 1983

    Google Scholar 

  25. F. Pischinger, U. Hilger, G. Jain et al. Wiener, Konzept eines 1,9 l DI-Methanolmotors für den Einsatz im Pkw, 11. Int. Wiener Motorensympos., Düsseldorf, 1990

    Google Scholar 

  26. U. Hilger, G. Jain, E. Scheid, SAE-901521, 1990

    Google Scholar 

  27. H. Nakamura, M. Oshima, M. Kido, in IX international symposium on alcohol fuels, Firenze 1991, p. 623

    Google Scholar 

  28. L.-J. Wang, R.-Z. Song, H.-B. Zhou et al., in Proceedings of the Institution of Mechanical Engineering Part D 222, 2008, p. 619

    Google Scholar 

  29. D.H. Qi, S.Q. Liu, J.C. Liu, C.H. Zhang, in Proceedings of the Institution of Mechanical Engineering Part D 219, 2005, p. 405

    Google Scholar 

  30. Fluid, 40, p. 36 (2007)

    Google Scholar 

  31. F. Zhang, S. Shuai, J. Wang, Z. Wang, SAE-2009-01-1182, 2009

    Google Scholar 

References to Section 6.3.1

  1. K. D. Miller, 23rd Annual Dewitt Petrochemical Review, Houston (1998)

    Google Scholar 

  2. U. Peters et al., in B. Elvers (ed.) Handbook of Fuels (Wiley-VCH, 2008)

    Google Scholar 

  3. M. Winterberg, in Ullmann’s Encyclopedia (Wiley-VCH, 2010)

    Google Scholar 

  4. CMAI, World Butylenes Analysis (2010)

    Google Scholar 

  5. CMAI, World Methanol Analysis (2012)

    Google Scholar 

  6. Chem. Systems, Tertiary Amyl Methyl Ether (1994)

    Google Scholar 

  7. CEH, Gasoline Octane Improvers/Oxygenates (2009)

    Google Scholar 

References to Section 6.4

  1. IZA Structure Commission, Database of Zeolite Structures, can be found under http://www.iza-structure.org/databases/

  2. C. Baerlocher, D.H. Olson, L.B. McCusker, Atlas of Zeolite Framework Types (Elsevier, Amsterdam, 2007)

    Google Scholar 

  3. A. Dyer, An introduction to zeolite molecular sieves (Wiley, Chichester, New York, 1988)

    Google Scholar 

  4. E. Wiberg, N. Wiberg, Lehrbuch der anorganischen Chemie (Walter de Gruyter, Berlin, 1995)

    Google Scholar 

  5. C.D. Chang, Catal. Revs 25, 1–118 (1983)

    Google Scholar 

  6. D.H. Everett, Pure Appl. Chem. 31, 577–638 (1972)

    Google Scholar 

  7. R. Lago, W. Haag, R. Mikovsky, D. Olson, S. Hellring, K. Schmitt, G. Kerr in Murakami (Hg.) 1986New developments in zeolite science

    Google Scholar 

  8. T. Mole in Studies in Surface Science and Catalysis, eds. by D.M. Bibby, C.D. Chang, R.F. Howe, S. Yurchak, vol 36 (Elsevier, Amsterdam, 1988)

    Google Scholar 

  9. K. Segawa, M. Sakaguchi, Y. Kurusu in Studies in Surface Science and Catalysis, eds. by D.M. Bibby, C.D. Chang, R.F. Howe, S. Yurchak, vol 36 (Elsevier, Amsterdam, 1988)

    Google Scholar 

  10. M. Stöcker, Microporous and mesoporous materials, 82 (2005)

    Google Scholar 

  11. T. Mokrani, M. Scurrell, Catal. Rev. Sci. Eng. 51, 1–145 (2009)

    Google Scholar 

  12. S.R. Blaszkowski, R.A. van Santen, J. Am. Chem. Soc. 119, 5020–5027 (1997)

    Google Scholar 

  13. G.F. Froment, W.J.H. Dehertog, A.J. Marchi in Catalysis. A Review of Recent Literature, ed. by J.J. Spivey. The Royal Society of Chemistry (Cambridge, England, 1992)

    Google Scholar 

  14. W. Loewenstein, American Mineralogist, pp. 92–96 (1954)

    Google Scholar 

  15. D.S. Coombs, A. Alberti, T. Armbruster, G. Artioli, C. Colella, E. Galli, J.D. Grice, F. Liebau, J.A. Mandarino, H. Minato et al., Can. Mineral. 35, 1571–1606 (1997)

    Google Scholar 

  16. IZA Structure Commission

    Google Scholar 

  17. R.F. Howe in Studies in Surface Science and Catalysis, eds. by D.M. Bibby, C.D. Chang, R.F. Howe, S. Yurchak., vol 36 (Elsevier, Amsterdam, 1988)

    Google Scholar 

  18. J.A. Rabo, G.J. Gajda in Guidelines for mastering the properties of molecular sieves. Relationship between the physicochemical properties of zeolitic systems and their low dimensionality (Plenum Press, New York, 1990)

    Google Scholar 

  19. J.F. Haw, Phys. Chem. chem. Phys. pp. 5431–5441 (2002)

    Google Scholar 

  20. P.L. Benito, A.G. Gayubo, A.T. Aguayo, M. Olazar, J. Bilbao, J. Chem. Tech. Biotechnol. pp. 183–191 (1996)

    Google Scholar 

  21. C.D. Chang, Catal. Revs. 26, 323–345 (1984)

    Google Scholar 

  22. M. Bjørgen, F. Joensen, M. Spangsberg Holm, U. Olsbye, K.-P. Lillerud, S. Svelle, Appl. Catal. A 345, 43–50 (2008)

    Google Scholar 

  23. R.J. Argauer, G.R. Landolt, US 3702886, 1972

    Google Scholar 

  24. E.M. Flanigen, R.L. Patton, US 4073865, 1978

    Google Scholar 

  25. J.F. Haw, W. Song, D.M. Marcus, J.B. Nicholas, ChemInform 34 (2003)

    Google Scholar 

  26. Z.-M. Cui, Q. Liu, W.-G. Song, L.-J. Wan, Angew. Chem. Int. Ed 45, 6512–6515 (2006)

    Google Scholar 

  27. C. Baerlocher, W.M. Meier, D. Olson, Atlas of zeolite framework types (Elsevier, Amsterdam, New York, 2001)

    Google Scholar 

  28. J.F. Haw, D.M. Marcus, Top. Catal. 34, 41–48 (2005)

    Google Scholar 

  29. Honeywell International Inc., Honeywell UOP’s Advanced Methanol-to-Olefins Technology Selected In China To Produce Chemical Products (2011), can be found under http://honeywell.com/News/Pages/Honeywell-UOP%E2%80%99s-Advanced-Methanol-To-Olefins-Technology-Selected-In-China-To-Produce-Chemical-Products.aspx

  30. S. Bordiga, L. Regli, D. Cocina, C. Lamberti, M. Bjørgen, K.P. Lillerud, J. Phys. Chem. B 109, 2779–2784 (2005)

    Google Scholar 

  31. J. Sefcik, E. Demiralp, T. Cagin, W.A. Goddard, III, Rational Design of Zeolites for catalysis and separation (1998)

    Google Scholar 

  32. G. Burgfels, S. Klingelhöfer, L. H. Ong, R. Olindo, J. Lercher, F. Schmidt, DE 102010005704, 2011

    Google Scholar 

  33. Y.-f. Chang, S.N. Vaughn, L.R.M. Martens, J.E. Baumgartner, S.L. Soled, K.R. Clem, US 2005/0137080, 2005

    Google Scholar 

  34. R. von Ballmoos, W.M. Meier, Nature 289, 782–783 (1981)

    Google Scholar 

  35. A. Tissler, P. Polanek, U. Girrbach, U. Müller, K. Unger, pp. 399–408

    Google Scholar 

  36. V.S. Nayak, V.R. Choudhary, Appl. Catal. 10, 137–145 (1984)

    Google Scholar 

  37. A. de Lucas, P. Canizares, A. Durán, A. Carrero, Appl. Catal. A 154, 221–240 (1997)

    Google Scholar 

  38. G. H. Kühl in Catalysis and zeolites. Fundamentals and applications, eds. by J. Weitkamp, L. Puppe (Springer, New York, 1999)

    Google Scholar 

  39. V. Zholobenko, L. Kustov, V. Kazansky, E. Loeffler, U. Lohse, G. Oehlmann, Zeolites 11, 132–134 (1991)

    Google Scholar 

  40. C.D. Chang, C.T.W. Chu, J.N. Miale, R.F. Bridger, R.B. Calvert, J. Am. Chem. Soc. 106, 8143–8146 (1984)

    Google Scholar 

  41. D.S. Shibabi, W.E. Garwood, P. Chu, J.N. Miale, R.M. Lago, C.T.W. Chu, C.D. Chang, J. Catal. 93, 471–474 (1985)

    Google Scholar 

  42. M. Kang, J. Mol. Catal. A: Chem. 160, 437–444 (2000)

    Google Scholar 

  43. D.L. Obrzut, P.M. Adekkanattu, J. Thundimadathil, J. Liu, D.R. Dubois, J.A. Guin, React. Kinet. Catal. Lett. 80, 113–121 (2003)

    Google Scholar 

  44. M. Salmasi, S. Fatemi, A. Taheri Najafabadi, J. Ind. Eng. Chem. 17, 755–761 (2011)

    Google Scholar 

  45. T.L. Marker, C.D. Gosling, US 5817906, 1998

    Google Scholar 

  46. M.M. Mertens, M.J. Janssen, L.R.M. Martens, K.R. Clem, US 20060079397, 2006

    Google Scholar 

  47. T. Inui, M. Kang, Appl. Catal. A 164, 211–223 (1997)

    Google Scholar 

  48. S. Yurchak in Studies in Surface Science and Catalysis, eds. by D.M. Bibby, C.D. Chang, R.F. Howe, S. Yurchak, vol 36 (Elsevier, Amsterdam, 1988)

    Google Scholar 

  49. P.L. Benito, A.G. Gayubo, A.T. Aguayo, M. Olazar, J. Bilbao, Ind. Eng. Chem. Res. 3991–3998 (1996)

    Google Scholar 

  50. H. Schulz, Catal. Today 154, 183–194 (2010)

    Google Scholar 

  51. F.J. Keil, Microporous Mesoporous Mater. 29, 49–66 (1999)

    Google Scholar 

  52. D.E. Krohn, M.G. Melconian in Studies in Surface Science and Catalysis, eds. by D.M. Bibby, C.D. Chang, R.F. Howe, S. Yurchak, vol 36 (Elsevier, Amsterdam, 1988)

    Google Scholar 

  53. T.V. Janssens, J. Catal. 264, 130–137 (2009)

    Google Scholar 

  54. S. Teketel, U. Olsbye, K.-P. Lillerud, P. Beato, S. Svelle, Microporous Mesoporous Mater. 136, 33–41 (2010)

    Google Scholar 

  55. U. Olsbye, M. Bjørgen, S. Svelle, K.-P. Lillerud, S. Kolboe, Catal. Today 106, 108–111 (2005)

    Google Scholar 

  56. M. Guisnet, J. Mol. Catal. A: Chem. 182–183, 367–382 (2002)

    Google Scholar 

  57. M. Guisnet, P. Magnoux, Appl. Catal. 54, 1–27 (1989)

    Google Scholar 

  58. M. Guisnet, P. Magnoux, Appl. Catal. A 212, 83–96 (2001)

    Google Scholar 

  59. S. Kolboe in Studies in Surface Science and Catalysis, eds. by D.M. Bibby, C.D. Chang, R.F. Howe, S. Yurchak, vol 36 (Elsevier, Amsterdam, 1988)

    Google Scholar 

  60. B.E. Langner, Appl. Catal. 2, 289–302 (1982)

    Google Scholar 

  61. A.G. Gayubo, J.M. Ortega, A.T. Aguayo, J.M. Arandes, J. Bilbao, Chem. Eng. Sci. 55, 3223–3235 (2000)

    Google Scholar 

  62. J. Li, Y. Tan, Q. Zhang, Y. Han, Fuel 89, 3510–3516 (2010)

    Google Scholar 

  63. A.T. Aguayo, D. Mier, A.G. Gayubo, M. Gamero, J. Bilbao, Ind. Eng. Chem. Res. 49, 12371–12378 (2010)

    Google Scholar 

  64. Topp-Jørgensen in Studies in Surface Science and Catalysis, eds. by D.M. Bibby, C.D. Chang, R.F. Howe, S. Yurchak, vol 36 (Elsevier, Amsterdam, 1988)

    Google Scholar 

  65. K.G. Allum, A.R. Williams in Studies in Surface Science and Catalysis, eds. by D.M. Bibby, C.D. Chang, R.F. Howe, S. Yurchak, vol 36 (Elsevier, Amsterdam, 1988)

    Google Scholar 

  66. I.I. Ivanova, Y.G. Kolyagin, Chem. Soc. Rev. 5018–5050 (2010)

    Google Scholar 

  67. C.D. Chang in Studies in Surface Science and Catalysis, eds. by D.M. Bibby, C.D. Chang, R.F. Howe, S. Yurchak, vol 36 (Elsevier, Amsterdam, 1988)

    Google Scholar 

  68. A.C. Gujar, V.K. Guda, M. Nolan, Q. Yan, H. Toghiani, M.G. White, Appl. Catal. A 363, 115–121 (2009)

    Google Scholar 

  69. M. Stöcker, Microporous Mesoporous Mater. 29, 3–48 (1999)

    Google Scholar 

  70. I.M. Dahl, S. Kolboe, Catal. Lett. 329–336 (1993)

    Google Scholar 

  71. I.M. Dahl, S. Kolboe, J. Catal. 458–464 (1994)

    Google Scholar 

  72. I.M. Dahl, S.Kolboe, J. Catal. 304–309 (1996)

    Google Scholar 

  73. T. Mole, G. Bett, D. Seddon, J. Catal. 435–445 (1983)

    Google Scholar 

  74. T. Mole, J.A. Whiteside, D. Seddon, J. Catal. 261–266 (1983)

    Google Scholar 

  75. W. Song, D.M. Marcus, H. Fu, J.O. Ehresmann, J.F. Haw, J. Am. Chem. Soc. 124, 3844–3845 (2002)

    Google Scholar 

  76. M. Bjørgen, J. Catal. 221, 1–10 (2004)

    Google Scholar 

  77. E.J. Munson, A.A. Kheir, N.D. Lazo, J.F. Haw, J. Phys. Chem. 7740–7746 (1996)

    Google Scholar 

  78. H. Adkins, P.D. Perkins, J. Phys. Chem. 32, 221–224 (1928)

    Google Scholar 

  79. J.M. Parera, Ind. Eng. Chem. Prod. Res. Dev 15, 234–241 (1976)

    Google Scholar 

  80. R. Abraham in DGMK Conference Future Feedstocks for Fuels and Chemicals, Berlin, Germany. Supplement to conference preprints, DGMK, Hamburg, Sept 29–Oct 1, 2008

    Google Scholar 

  81. G. Burgfels, K. Kochloefl, J. Ladebeck, F. Schmidt, M. Schneider, H.J. Wernicke, DE 3838710, 1990

    Google Scholar 

  82. Y. Wei, J. Li, S. Xu, S. Yuan, L. Xu, J. Chen, Y. Zhou, Y. Qi, Z. Liu, Complete prospect and carbon atom economy evaluation of methanol-to-olefins reaction. Abstract ICC 2012, can be found under http://events.dechema.de/events/en/Events/Materials+for+Energy+_+EnMat+II/Congress+Planer/Datei_Handler-tagung-564-file-7857-p-127866.htm

  83. B.M. Lok, C.A. Messina, R.L. Patton, R.T. Gajek, T.R. Cannan, E.M. Flanigen, US 4440871, 1984

    Google Scholar 

  84. T.N. Kalnes, T.V. Voskoboynikov, US 7414167, 2008

    Google Scholar 

  85. E. Köhler, F. Schmidt, H.J. Wernicke, M. de Pontes, H.L. Roberts, Hydrocarbon technology international 37–40 (1995)

    Google Scholar 

  86. C. Knottenbelt, Catal. Today 71, 437–445 (2002)

    Google Scholar 

  87. D.W. Leyshon, G.E. Cozzone, US 5043522, 1991

    Google Scholar 

  88. D.L. Johnson, K.E. Nariman, R.A. Ware, US 6222087, 2001

    Google Scholar 

References to Section 6.4.1

  1. R.J. Argauer, G.R. Landolt, US 3702886, 1972

    Google Scholar 

  2. C.D. Chang, A.J. Silvestri, J. Catal. 249–259 (1977)

    Google Scholar 

  3. C.D. Chang, A.J. Silvestri, ChemTech 17, 624–631 (1987)

    Google Scholar 

  4. C.D. Chang, Catal. Revs. 25, 1–118 (1983)

    Google Scholar 

  5. M. Stöcker, Microporous and Mesoporous Mater. 82 (2005)

    Google Scholar 

  6. C.J. Maiden in Studies in Surface Science and Catalysis, eds. by D.M. Bibby, C.D. Chang, R.F. Howe, S. Yurchak, vol 36 (Elsevier, Amsterdam, 1988)

    Google Scholar 

  7. K.G. Allum, A.R. Williams in Studies in Surface Science and Catalysis, eds. by D.M. Bibby, C.D. Chang, R.F. Howe, S. Yurchak, vol 36 (Elsevier, Amsterdam, 1988)

    Google Scholar 

  8. G.A. Mills, Fuel 73, 1243–1279 (1994)

    Google Scholar 

  9. H.R. Grimmer, N. Thiagarajan, E. Nitschke in Studies in Surface Science and Catalysis, eds. by D.M. Bibby, C.D. Chang, R.F. Howe, S. Yurchak, vol 36 (Elsevier, Amsterdam, 1988)

    Google Scholar 

  10. T. Mokrani, M. Scurrell, Catal. Rev. Sci. Eng. 51, 1–145 (2009)

    Google Scholar 

  11. Structure Commission of the International Zeolite Association (2008), can be found under http://izasc.ethz.ch/fmi/xsl/IZA-SC/ftc_fw.xsl?-db=Atlas_main&-lay=fw&-max=25&STC=MFI&-find

  12. M. Stöcker, Microporous Mesoporous Mater. 29, 3–48 (1999)

    Google Scholar 

  13. T. Mole in Studies in Surface Science and Catalysis, eds. by D.M. Bibby, C.D. Chang, R.F. Howe, S. Yurchak, vol 36 (Elsevier, Amsterdam, 1988)

    Google Scholar 

  14. G.F. Froment, W.J.H. Dehertog, A.J. Marchi in Catalysis. A review of recent literature, ed. by J.J. Spivey. The Royal Society of Chemistry (Cambridge, England, 1992)

    Google Scholar 

  15. J.F. Haw, W. Song, D.M. Marcus, J.B. Nicholas, ChemInform 34 (2003)

    Google Scholar 

  16. C.D. Chang in Studies in Surface Science and Catalysis, eds. by D.M. Bibby, C.D. Chang, R.F. Howe, S. Yurchak, vol 36 (Elsevier, Amsterdam, 1988)

    Google Scholar 

  17. F.J. Keil, Microporous Mesoporous Mater. 29, 49–66 (1999)

    Google Scholar 

  18. I.I. Ivanova, Y.G. Kolyagin, Chem. Soc. Rev. 5018–5050 (2010)

    Google Scholar 

  19. S. Yurchak in Studies in Surface Science and Catalysis, eds. by D.M. Bibby, C.D. Chang, R.F. Howe, S. Yurchak, vol 36 (Elsevier, Amsterdam, 1988)

    Google Scholar 

  20. A.C. Gujar, V.K. Guda, M. Nolan, Q. Yan, H. Toghiani, M.G. White, Appl. Catal. A 363, 115–121 (2009)

    Google Scholar 

  21. H. Schulz, Catal. Today 154, 183–194 (2010)

    Google Scholar 

  22. M. Guisnet, J. Mol. Catal. A: Chem. 182–183, 367–382 (2002)

    Google Scholar 

  23. M. Guisnet, P. Magnoux, Appl. Catal. 54, 1–27 (1989)

    Google Scholar 

  24. M. Guisnet, P. Magnoux, Appl. Catal. A 212, 83–96 (2001)

    Google Scholar 

  25. A.G. Gayubo, J.M. Ortega, A.T. Aguayo, J.M. Arandes, J. Bilbao, Chem. Eng. Sci. 55, 3223–3235 (2000)

    Google Scholar 

  26. B.E. Langner, Appl. Catal. 2, 289–302 (1982)

    Google Scholar 

  27. P.L. Benito, A.G. Gayubo, A.T. Aguayo, M. Olazar, J. Bilbao, Ind. Eng. Chem. Res. 3991–3998 (1996)

    Google Scholar 

  28. J. Li, Y. Tan, Q. Zhang, Y. Han, Fuel 89, 3510–3516 (2010)

    Google Scholar 

  29. A.T. Aguayo, A.G. Gayubo, J. Ereña, R. Vivanco, J. Bilbao, Chem. Eng. J. 92, 141–150 (2003)

    Google Scholar 

  30. T.V. Janssens, J. Catal. 264, 130–137 (2009)

    Google Scholar 

  31. R.F. Howe in Studies in Surface Science and Catalysis, eds. by D.M. Bibby, C.D. Chang, R.F. Howe, S. Yurchak, vol 36 (Elsevier, Amsterdam, 1988)

    Google Scholar 

  32. A.T. Aguayo, D. Mier, A.G. Gayubo, M. Gamero, J. Bilbao, Ind. Eng. Chem. Res. 49, 12371–12378 (2010)

    Google Scholar 

  33. Topp-Jørgensen in Studies in Surface Science and Catalysis, eds. by D.M. Bibby, C.D. Chang, R.F. Howe, S. Yurchak, vol 36 (Elsevier, Amsterdam, 1988)

    Google Scholar 

  34. S. Kolboe in Studies in Surface Science and Catalysis, eds. by D.M. Bibby, C.D. Chang, R.F. Howe, S. Yurchak, vol 36 (Elsevier, Amsterdam, 1988)

    Google Scholar 

  35. H.-H. Gierlich, W. Dolkemeyer, A. Avidan, N. Thiagarajan, Umwandlung von Methanol zu Benzin nach dem Wirbelbett-Verfahren, Innsbruck

    Google Scholar 

  36. K.H. Keim, J. Maziuk, A. Toennesmann, Erdöl and Kohle, Erdgas, Petrochemie 37, 558–562 (1984)

    Google Scholar 

  37. K.H. Keim, F.J. Krambeck, J. Maziuk, A. Toennesmann, Erdöl, Erdgas, Kohle 103, 82–85 (1987)

    Google Scholar 

  38. C.D. Chang, Catal. Revs. 26, 323–345 (1984)

    Google Scholar 

  39. H.A. Zaidi, K.K. Pant, Ind. Eng. Chem. Res. 47, 2970–2975 (2008)

    Google Scholar 

  40. I. Nexant, PERP Program: Developments in para-Xylene Technology, can be found under http://www.chemsystems.com/about/cs/news/items/PERP%200809S11_paraXylene.cfm

  41. J. Scherzer, Octane-enhancing, zeolitic FCC catalysts. Scientific and technical aspects (M. Dekker, New York, 1990)

    Google Scholar 

  42. M.L. Occelli, P. O’Connor, Fluid Cracking Catalysts (M. Dekker, New York, 1998)

    Google Scholar 

  43. S. Tabak, ExxonMobil Methanol to Gasoline, can be found under http://www.uschinaogf.org/Forum7/7Topic23-SamuelTabak-ExxonMobil-English.pdf

  44. J. Packer, The Production of Methanol and Gasoline, can be found under http://nzic.org.nz/ChemProcesses/energy/7D.pdf

  45. J. Peckham, JAMG’s Methanol-to-Gasoline Plant Starts-up, can be found under http://www.worldfuels.com/wfExtract/exports/Content/33fead92-fc2d-447d-bc2e-3e95a8ff6e12.html

  46. M. Schneider, F. Schmidt, G. Burgfels, H. Buchold, F.-W. Möller, EP 0448000, 1991

    Google Scholar 

  47. ExxonMobil, ExxonMobil’s Methanol to Gasoline (MTG) Techno logy Selected for DKRW Advanced Fuels’ Coal to Liquids Project, can be found under http://www.dkrwaf.com/_filelib/FileCabinet/PDFs/Press_Releases/ExxonPressRelease.pdf?FileName=ExxonPressRelease.pdf

  48. D.E. Krohn, M.G. Melconian in Studies in Surface Science and Catalysis, eds. by D.M. Bibby, C.D. Chang, R.F. Howe, S. Yurchak, vol 36 (Elsevier, Amsterdam, 1988)

    Google Scholar 

  49. M. Bjørgen, F. Joensen, M. Spangsberg Holm, U. Olsbye, K.-P. Lillerud, S. Svelle, Appl. Catal. A 345, 43–50 (2008)

    Google Scholar 

  50. Methanex Corporation, Global Environmental Report 2005, can be found under http://www.methanex.com/environment/documents/2005_Environmental_Excellence_Report.pdf

  51. S. Yurchak, US 4814536, 1989

    Google Scholar 

  52. J.H. Beech, Jr., F.P. Ragonese, US 5059738, 1991

    Google Scholar 

  53. W. Lee, S. Yurchak, N. Daviduk, J. Maziuk in Proceedings of the NPRA Annual Meeting, 1980

    Google Scholar 

  54. T. Sugiyama, Thesis, Massachusetts Institute of Technology, 1994

    Google Scholar 

  55. Green Car Congress, DKRW Selects ExxonMobil’s Methanol-to-Gasoline (MTG) Technology for Coal-to-Liquids Project, can be found under http://www.greencarcongress.com/2007/12/dkrw-selects-ex.html

  56. Lurgi GmbH, The R&D centre, can be found under http://www.gcg-es.com/PrincipalsProducts/18-Lurgi/Lurgi02-Researchcentre.pdf

  57. M. Rothaemel, H.-D. Holtmann, Erdöl Erdgas Kohle 234–237 (2002)

    Google Scholar 

  58. G. Burgfels, K. Kochloefl, J. Ladebeck, F. Schmidt, M. Schneider, H.J. Wernicke, DE 3838710, 1990

    Google Scholar 

  59. H. Hartmann, Erdöl Erdgas Kohle 123, 362–369 (2007)

    Google Scholar 

  60. W. Liebner, M. Wagner, Erdöl Erdgas Kohle 120 (2004)

    Google Scholar 

  61. PetroSA, COD Technology, can be found under http://www.petrosa.co.za/innovation_in_action/Pages/COD-Technology.aspx

  62. S.A. Tabak, A.A. Avidan, F.J. Krambeck, Production of synthetic gasoline and diesel fuel from non-petroleum resources, can be found under http://web.anl.gov/PCS/acsfuel/preprint archive/Files/31_2_NEW YORK_04-86_0293.pdf

  63. S. Lee, M. Gogate, C.J. Kulik, Fuel Sci. Technol. Int. 13, 1039–1057 (1995)

    Google Scholar 

  64. M. Wang, GREET1.5a: Changes from GREET1.5 (2000), can be found under http://www.transportation.anl.gov/pdfs/TA/150.pdf

References to Section 6.4.2

  1. Chemical Market Associates Inc. (CMAI), World Light Olefins Analysis (WLOA) (2009). http://www.ihs.com/products/chemical/index.aspx?pu=1&rd=cmai

  2. D. Greer, M. Houdek, R. Pittmann, J. Woodcock, Erdöl Erdgas Kohle 118(5), 242 (2002)

    Google Scholar 

  3. CMAI, World Light Olefins Analysis, Houston Texas 173–176 (2003)

    Google Scholar 

  4. R.J. Argauer, G.R. Landolt, US Patent 3,702,886

    Google Scholar 

  5. C.D. Chang, A.J. Silvestri, Catalysis 47, 249–259 (1977)

    Google Scholar 

  6. C.D. Chang, A.J. Silvestri, ChemTech 10, 624 (1987)

    Google Scholar 

  7. F.J. Keil, Microporous and Mesoporous Mater. 29, 49–66 (1999) (Review Methanol-to-hydrocarbons: process technology)

    Google Scholar 

  8. Z.M. Liu, C.L. Sun, G.W. Wang, Q.X. Wang, G.Y. Cai, Fuel Process. Technol. 62, 161–172 (2000)

    Google Scholar 

  9. J. Li, Y. Wei, G. Liu, Y. Qi, P. Tian, B. Li, Y. He, Z. Liu, Catal. Today 171, 1 (2011)

    Google Scholar 

  10. T. Ren, M. Patel, K. Blok, Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes. Energy 31, 425–451 (2006)

    Google Scholar 

  11. T. Mokrani, M. Scurrell, Gas conversion to liquid fuels and chemicals: the methanol route-catalysis and processes development. Catal. Rev. 51, 1–145 (2009)

    Google Scholar 

  12. C.D. Chang, in Methanol to Hydrocarbons, eds. by G. Ertl, H. Knözinger, Weitkamp. Handbook of Heterogeneous Catalysis, 1st edn, p. 1894

    Google Scholar 

  13. S. Kvisle, T. Fuglerud, S. Kolboe, U. Olsbye, K.P. Lillerud, B. Vora, in Methanol-to-Hydrocarbons. Handbook of Heterogeneous Catalysis, vol 2, p. 707

    Google Scholar 

  14. T.J. Gregor Remans, G. Jenzer, A. Hoek, Gas-to-Liquids. Handbook of Heterogeneous Catalysis, pp. 2994–3010 (2008)

    Google Scholar 

  15. Michael Stöcker, Methanol-to-hydrocarbons: catalytic materials and their behaviour. Microporous Mesoporous Mater. 29(1–2), 3–48 (1999). doi:10.1016/S1387-1811(98)00319-9

    Google Scholar 

  16. J. Li, Y. Wei, G. Liu, Y. Qi, P. Tian, B. Li, Y. He, Z. Liu, Catal. Today 171(1), 221–228 (2011)

    Google Scholar 

  17. C.D. Chang, Catal. Rev. Sci. Eng. 25, 1(1983)

    Google Scholar 

  18. U.S. Pat. No. 3,931,349

    Google Scholar 

  19. U.S. Pat. No. 4,404,414

    Google Scholar 

  20. D. Chen, H.P. Rebo, K. Moljord, A. Holmen, Methanol Conversion to Light Olefins over SAPO-34. Sorption, Diffusion, and Catalytic Reaction. Ind. Eng. Chem. Res. 38, 4241–4249 (1999)

    Google Scholar 

  21. A.G. Gayubo, A.T. Aguayo, M. Castilla, M. Olazar, J. Bilbao, Catalyst reactivation kinetics for methanol transformation into hydrocarbons. Expressions for designing reaction-regeneration cycles in isothermal and adiabatic fixed bed reactor. Chem. Eng. Sci. 56, 5059–5071 (2001)

    Google Scholar 

  22. H. Hu, F. Cao, W. Ying, Q. Sun, D. Fang, Study of coke behaviour of catalyst during methanol-to-olefins process based on a special TGA reactor. Chem. Eng. J. 160, 770–778 (2010)

    Google Scholar 

  23. A.J. Marchi, G.F. Froment, Catalytic conversion of methanol to light alkenes on SAPO molecular sieves.Appl. Catal. 71, 139–152 (1991)

    Google Scholar 

  24. J. Luckner, Effect of process parameters on methanol-to-olefins reactions over SAPO catalysts. PhD Thesis, Auburn University, 2005

    Google Scholar 

  25. G. Qi, Z. Xie, W. Yang, S. Zhong, H. Liu, C. Zhang, Q. Chen, behaviours of coke deposition on SAPO-34 catalyst during methanol conversion to light olefins. Fuel Process

    Google Scholar 

  26. L. Travalloni, A.C.L. Gomes, A.B. Gaspar, M.A.P. da Silva, Methanol conversion over acid solid catalysts. Catal. Today 133–135, 406–412 (2008)

    Google Scholar 

  27. X. Wu, M.G. Abraha, R.G. Anthony, Methanol conversion on SAPO-34: reaction condition for fixed-bed reactor. Appl. Catal. A: Gen. 260, 63–69 (2004)

    Google Scholar 

  28. A. T., Aguayo, D., Mier, A. G., Gayubo, M., Gamero, J. Bilbao, Kinetics of Methanol Transformation into Hydrocarbons on a HZSM-5 Zeolite Catalyst at High Temperature (400-550°C). Ind. Eng. Chem. Res.2010, 49, 12371–12378

    Google Scholar 

  29. S.M. Alwahabi, G.F. Froment, Single Event Kinetic Modeling of the Methanol-to-Olefins Process on SAPO-34. Ind. Eng. Chem. Res. 43, 5098–5111 (2004)

    Google Scholar 

  30. D. Chen, H.P. Rebo, A. Grønvold, K. Moljord, A. Holmen, Methanol conversion to light olefins over SAPO-34: kinetic modeling of coke formation. Microporous Mesoporous Mater. 35–36, 121–135 (2000)

    Google Scholar 

  31. S.M. Al Wahabi, Conversion of methanol to light olefins on SAPO-34: Kinetic modeling and reactor design. PhD Thesis, Texas A&M University, 2003

    Google Scholar 

  32. N. Fatourehchi, M. Sohrabi, S.J. Royaee, S.M. Mirarefin, Application of a Fluidized bed reactor in the MTO (Methanol to Olefin) process: preparation of catalyst and presentation of a kinetic model. Petrol. Sci. Technol. 29, 1578–1589 (2011)

    Google Scholar 

  33. A.G. Gayubo, A.T. Aguayo, A.E. Sánchez del Campo, A.M. Tarrío, J. Bilbao, Kinetic modeling of methanol transformation into olefins on a SAPO-34, Catalyst. Ind. Eng. Chem. Res. 39, 292–300 (2000)

    Google Scholar 

  34. A.T. Najafabadi, S. Fatemi, M. Sohrabi, M. Salmasi, Kinetic modeling and optimization of the operating condition of MTO process on SAPO-34, Catalyst. J. Ind. Eng. Chem. 18, 29–37 (2012)

    Google Scholar 

  35. S. Soundararajan, A.K. Dalai, F. Berruti, Modeling of methanol-to-olefins (MTO) process in a circulating fluidized bed reactor. Fuel 80, 1187–1197 (2001)

    Google Scholar 

  36. A.T. Aguayo, A.G. Gayubo, R. Vivanco, A. Alonso, J. Bilbao, Initiation step and reactive intermediates in the transformation of methanol into olefinsover SAPO-18. Catal. Ind. Eng. Chem. Res. 44, 7279–7286 (2005)

    Google Scholar 

  37. A.T. Aguayo, A.G. Gayubo, R. Vivanco, M. Olazar, J. Bilbao, Role of Acidity and microporous structure in alternative catalysts for the transformation of methanol into olefins. Appl. Catal. A: Gen. 283, 197–207 (2005)

    Google Scholar 

  38. A.G. Gayubo, A.T. Aguayo, A. Alonso, J. Bilbao, Kinetic Modeling of the Methanol-to-Olefins Process on a Silicoaluminophosphate (SAPO-18) Catalyst by Considering Deactivation and the Formation of Individual Olefins. Ind. Eng. Chem. Res. 46, 1981–1989 (2007)

    Google Scholar 

  39. A.G. Gayubo, A.T. Aguayo, A. Alonso, A. Atutxa, J. Bilbao, Reaction scheme and kinetic modeling for the MTO Process over a SAPO-18. Catal. Catal. Today 106, 112–117 (2005)

    Google Scholar 

  40. Y. Kumita, J. Gascon, E. Stavitski, J.A. Moulijn, F. Kapteijn, Shape selective methanol-to-olefins over highly thermostable DDR catalysts. Appl. Catal. A: Gen. 391, 234–243 (2011)

    Google Scholar 

  41. J. Li, Y. Wei, G. Liu, Y. Qi, P. Tian, B. Li, Y. He, Z. Liu, Comparative study of MTO conversion over SAPO-34, H-ZSM-5 and H-ZSM-22: Correlating catalytic performance and reaction mechanism to zeolite topology.Catal. Today 171, 221–228 (2011)

    Google Scholar 

  42. D. Mores, J. Kornatowski, U. Olsbye, B.M. Weckhuysen, Coke Formation during the Methanol-to-Olefin Conversion: In Situ Microspectroscopy on Individual H-ZSM-5 Crystals with Different Brønsted Acidity. Chem. Eur. J. 17, 2874–2884 (2011)

    Google Scholar 

  43. B. Valle, A. Alonso, A. Atutxa, A.G. Gayubo, J. Bilbao, Effect of nickel incorporation on the acidity and stability of HZSM-5 zeolite in the MTO process. Catal. Today 106, 118–122 (2005)

    Google Scholar 

  44. E.M. Flanigen, B.M. Lok, R.L. Patton, S.T. Wilson1987 Aluminophosphate molecular sieves and the periodic table, in New Developments in Zeolite Science and Technology, in Proceedings of 7th international Zeolite Conference, Tokyo, eds. by Y. Murakami, A. Ijima, J.W. Ward (Elsevier, Amsterdam, 1986) pp. 103–112

    Google Scholar 

  45. S.W. Kaiser, US Patent 4 499 327, 1985

    Google Scholar 

  46. S.W. Kaiser, US Patent 4 524 234, 1985

    Google Scholar 

  47. S.W. Kaiser, Arab. J. Sci. Eng. 10, 361 (1985)

    Google Scholar 

  48. G. Pop, G. Musca, D. Ivanescu, E. Pop, G. Maria, E. Chirila, O. Muntean, Chem. Ind. 46, 443 (1992)

    Google Scholar 

  49. U.S. Pat. No. 4,440,871

    Google Scholar 

  50. J. Chen, P.A. Wright, S. Natarajan, J.M. Thomas in Studies in Surface Science and Catalysis 84, 1731–1738 (1994)

    Google Scholar 

  51. U.S. Pat. No. 5,279,810

    Google Scholar 

  52. J. Chen, P.A. Wright, J.M. Thomas, S. Natarajan, L. Marchese, S.M. Bradley, G. Sankar, C.R.A. Catlow, P.L. Gai-Boyes 98, 10216–10224 (1994)

    Google Scholar 

  53. J. Chen, J.M. Thomas, P.A. Wright, R.P. Townsend, Catal. Lett. 28, 241–248 (1994)

    Google Scholar 

  54. A.M. Prakash, S. Unnikrishnan, J. Chem. Soc. Faraday Transactions, Royal Society of Chemistry, London, 90, 2291 (1994)

    Google Scholar 

  55. Y. Xu et al. J. Chem. Soc., Faraday Transactions 86, 2, 425–429 (1990)

    Google Scholar 

  56. E.M. Flanigen, B.M. Lok, R.L. Pattonand S.T.Wilson Aluminophosphatemolecular sieves and the periodictable, in New Developments in ZeoliteScience and Technology, in Proceedings 7th International Zeolite conference, Tokyo, 1986 eds. Y. Murakami, A. Ijima, J.W. Ward (Elsevier, Amsterdam,1987), pp. 103–112

    Google Scholar 

  57. Z.-M. Cui, Q. Liu, W.-G. Song, L.-J. Wan, Insights into the Mechanism of Methanol-to-Olefin Conversion at Zeolites with Systematically Selected Framework Structures. Angew. Chem. Int. Ed. 45, 6512–6515 (2006)

    Google Scholar 

  58. C. Baerlocher, W.M. Meier, D.H. Olson, Atlas of Zeolite Framework Types, 5th edn. (2001)

    Google Scholar 

  59. J.F. Haw, W. Song, D.M. Marcus, J.B. Nicholas, The Mechanism of Methanol to Hydrocarbon Catalysis. Acc. Chem. Res. 36, 317–326 (2003)

    Google Scholar 

  60. J.F. Haw, D.M. Marcus, Well-defined (supra)molecular structures in zeolite methanol-to-olefin catalysis. Topics Catal. 34, 1–4, 41–48 (2005)

    Google Scholar 

  61. J.Q. Chen, A. Bozzano, B. Glover, T. Fuglerud, S. Kvisle, Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process. Catal. Today 106, 103–107 (2005)

    Google Scholar 

  62. PERP Program -Developments in para-Xylene Technology. http://www.chemsystems.com/about/cs/news/items/PERP%200809S11_paraXylene.cfm

  63. J. Scherzer, Octane-enhancing, Zeolitic FCC Catalysts: Scientific and Technical Aspects (1990)

    Google Scholar 

  64. S. Tabak http://www.uschinaogf.org/Forum7/7Topic%2023-%20Samuel%20Tabak-%20ExxonMobil-%20English.pdf, http://nzic.org.nz/ChemProcesses/energy/7D.pdf

  65. http://www.worldfuels.com/wfExtract/exports/Content/33fead92-fc2d-447d-bc2e-3e95a8ff6e12.html

  66. M. Schneider, F. Schmidt, G. Burgfels, H. Buchold, Friedrich-Wilhelm, Möller, Süd-Chemie AG, METALLGESELLSCHAFT AG, European Patent EP0448000

    Google Scholar 

  67. http://www.petrosa.co.za/cod_technology.php

  68. Engineering and Construction: A New Lurgi-MTP® Unit for China 27/08/2011. http://www.cn.airliquide.com/en/news/local-news-and-events/engineering-construction-a-new-lurgi-mtp-unit-for-china.html

  69. Coal Chemical Products (Methanol, PE, PP) http://www.shenhuagroup.com.cn/english/productsservices/product0introduction/coal0chemicals0products/index.shtml

  70. M. Arné, H.W. Scheeline, PEP Report 146, Bulk Chemicals from Synthesis Gas, June 1982

    Google Scholar 

  71. S. Kvisle, T. Fuglerud, S. Kolboe, U. Olsbye, K.P. Lillerud, B.V. Vora, “Methanol-to-Hydrocarbons” in Handbook of Heterogeneous Catalysis, 2, pp. 707

    Google Scholar 

  72. T. Xu, J.L. White, U. S. Patent 6,734,330, 2004, priority filingand PCT published Feb 2000

    Google Scholar 

  73. T. Xu, J.L. White, U. S. Patent 6,743,747, 2004, priority filingand PCT published Feb 2000

    Google Scholar 

  74. A. Dyer, An Introduction to Zeolite Molecular Sieves (Wiley, New York, 1988)

    Google Scholar 

  75. S.E. Volz, J.J. Wise, Development studies on conversion of methanol and related oxygenates to gasoline. Final Report ERDA Contract No. E(49-18)-1773 (1976)

    Google Scholar 

  76. A. Kam, W. Lee, Fluid-bed process studies of the conversion of methanol to high octane gasoline. Final Report Contract No. EX-76-C-01-2490 (1978)

    Google Scholar 

  77. K.-H. Keim, F.J. Krambeck, J. Maziuk, A. Tonnesmann, ERDÖL, ERDGAS, KOHLE, 103. Jahrgang, Heft 2, Feb 1987

    Google Scholar 

  78. C.D. Chang, C.T.-W. Chu, R.F. Socha, J. Catal. 86, 289–296 (1984)

    Google Scholar 

  79. S.A. Tabak, F.J. Krambeck, Shaping Process makes Fuels. Hydrocarbon Process. 64, 9, 72–74 (1985)

    Google Scholar 

  80. A.A. Avidan Gasoline and distillate fuels from methanol, in Methane conversion proceedings of a symposium on the production of fuels and chemicals from natural gas, ed. by D.M. Bibby, C.D. Chang, R.F. Howe, S. Yurchak, Studies in Surface Science and Catalysis, 36, pp. 307–323 (1988)

    Google Scholar 

  81. N. Daviduk, J.H. Haddad; United States Patent4,431,856, Assignee: Mobil Oil Corporation (1984)

    Google Scholar 

  82. U.S. Pat. No. 6,023,005

    Google Scholar 

  83. http://www.syn.ac.cn/ennews/Technology/2009/6/09631633371761.html

  84. Shenhua Ningxia Coal Industry Group Co is a joint venture between the Ningxia provincialgovernment and China’s largest coal producer Shenhua Group Corp, with 49 and 51 % stake-holding, respectively

    Google Scholar 

  85. http://www.csclc.com.cn/ens/gsxx/gsjj/2010-12-15/238.shtml

  86. http://publications.polymtl.ca/158/1/2009_MarineKeraron.pdf

  87. E.N. Givens, C.J. Plank, Edward J.Rosinski; US Patent 3,960,978, 1976

    Google Scholar 

  88. D.Wei, T. Voskoboynikov*, M. Quick, UOP LLC, 50 East Algonquin Road, Des Plaines, IL 60017, USA, W. Vermeiren, ATOFINA Research, Zone Industrielle C, B-7181 Feluy, Belgium

    Google Scholar 

  89. DE000010233069C1 assigned to Lurgi AG, Frankfurt, DE, 19.07.2002

    Google Scholar 

  90. D.Wei, T.Voskoboynikov*, M.Quick, UOP LLC, 50 East Algonquin Road, Des Plaines, IL 60017, USA, W.Vermeiren, ATOFINA Research, Zone Industrielle C, B-7181 Feluy, Belgium

    Google Scholar 

  91. T. Ren, M.K. Patel, K. Blok, Energy 33, 817–833 (2008)

    Google Scholar 

  92. Kvisle S, Nilsen HR, MTO: state of art and perspectives. In: DGMK conference: creating value from light olefins-production and conversion in Hamburg. Hamburg: German Society for Petroleum and Coal Science and Technology (2001)

    Google Scholar 

  93. US Patent Office. Methanol-to-olefin process with increased selectivity to ethylene and propylene (US Patent 6,534,692). UOP LLC, US Patent Office (2003)

    Google Scholar 

  94. J. Gregor Meeting the changing needs of the olefins market by UOP LLC. In: The 5th EMEA petrochemical technology conference in Paris. London: Euro Petroleum Consultancy Ltd. (2003)

    Google Scholar 

  95. J. Grootjans, V. Vanrysselberghe, W. Vermeiren, Integration of total petrochemicals: UOP olefins conversion process into a naphtha steam cracker facility. Catal. Today 106(1–4), 57–61 (2005)

    Google Scholar 

  96. P. Keep, Comparison of remote gas conversion technologies (Synetix Inc., London, 1999). See also: www.synetix.com/methanol/pdfs/papers/imtof99-paper9(59w).pdfS

  97. US Patent Office. Production of light olefins from oxygenate using framework gallium-containing medium pore molecular sieve (US Patent application 20030018231). ExxonMobil Inc., US Patent Office, 2003

    Google Scholar 

  98. W. Liebner, GTC-Gas to Chemicals Process Options for Venezuela by Lurgi Oel-Gas Chemie Engineering. In: PdVSA-EFO seminar. Caracas, Venezuela: Petro′leos de Venezuela S.A. (2002)

    Google Scholar 

  99. H. Koempel, W. Liebne, M. Wagner, MTP—an economic route to dedicated propylene. In: The 2nd ICIS-LOR world olefins conference (ICIS-LOR Inc., Amsterdam, 2003)

    Google Scholar 

  100. M. Rothaemel, H.D. Holtmann, MTP, Methanol-to-Propylene—Lurgi’s way, in DGMK conference “creating value from light olefins—production and conversion” (German Society for Petroleum and Coal Science and Technology, Hamburg, 2001)

    Google Scholar 

  101. L. Yingxu Wei, J. Li, S. Xu, C. Yuan, L. Xu, J. Chen, Y. Zhou, Y. Qi, Z. Liu, 12th ICC, München 2012, Abstracts

    Google Scholar 

  102. http://www.icis.com/Articles/2007/11/05/9076035/methanol-uses-and-market-data.html, 12 Oct 2010

  103. http://www.icis.com/Articles/2005/08/20/2009637/mtomtp-ready-to-takeoff.html

  104. H. Hui, http://www.icis.com/Articles/2012/10/30/9604963/china-annual-methanol-demand-to-spike-on-mto-mtp-projects.html, 30 Oct 2012

References to Section 6.4.3

  1. De Witt Bits 2011 Global Industry Overview, Methanol and Derivatives Service, 1st Feb 2012

    Google Scholar 

  2. R. Kempf, Advantages of Commercialization of the UOP Advanced MTO technology, 2011 Middle East Chemical Week Conference, 16–19 Oct 2011, Abu Dhabi National Exhibition centre

    Google Scholar 

  3. IHS INC, 2012

    Google Scholar 

  4. Propylene Feedstock Diversification Conference, Shanghai, 2012

    Google Scholar 

  5. H. Hui, ‘China annual methanol demand to spike on MTO, MTP projects’, ICIS news, Oct 2012, http://www.icis.com/Articles/2012/10/30/9604963/china-annual-methanol-demand-to-spike-on-mto-mtp-projects.html

  6. ICIS 22nd Aug 2005 http://www.icis.com/Articles/2005/08/20/2009637/mtomtp-ready-to-takeoff.html (Source: ACN)

  7. R.J Argauer, G.R., Landolt, US Patent 3,702,886

    Google Scholar 

  8. C.D. Chang, A.J. Silvestri, J. Catal., 47, 249–259 (1977)

    Google Scholar 

  9. C.D. Chang, A.J. Silvestri, ChemTech 10, 624 (1987)

    Google Scholar 

  10. P. Trabold, Sustainable Routes to Petrochemical Products, in 7th international petrochemical conference, Athene, 23th/24th June 2005

    Google Scholar 

  11. M. Stöcker, Microporous and Mesoporous Mater., 3–48 (1999)

    Google Scholar 

References to Section 6.4.4

  1. R.J. Argauer, G.R. Landolt, US Patent 3,702,886

    Google Scholar 

  2. C.D. Chang, A.J. Silvestri, J. Catal. 47, 249–259 (1977)

    Google Scholar 

  3. C.D. Chang, A.J. Silvestri, ChemTech 10, 624 (1987)

    Google Scholar 

  4. C.D. Chang, in Methanol to Hydrocarbons, Handbook of Heterogeneous Catalysis, Ertl, G., Knözinger, H. & Weitkamp, 1st edn., p. 1894

    Google Scholar 

  5. S. Kvisle, T. Fuglerud, S. Kolboe, U. Olsbye, K.P. Lillerud, B. Vora, in Methanol-to-Hydrocarbons. Handbook of Heterogeneous Catalysis, vol 2, p. 707

    Google Scholar 

  6. T.J. Gregor Remans, G. Jenzer, A. Hoek, Gas-to-Liquids. Handbook of heterogeneous catalysis, pp. 2994–3010 (2008)

    Google Scholar 

  7. F.J. Keil, Microporous Mesoporous Mater. 29(1–2), 49–66 (1999)

    Google Scholar 

  8. M. Stöcker, Microporous and Mesoporous Mater. 29(1–2), 3–48 (1999)

    Google Scholar 

  9. The Catalyst Group Resources, Inc., Volume 2: Syngas Conversion to Products Assessment, April 2007

    Google Scholar 

  10. Technologies of Lurgi Oel Gas Chemie, 302.e/02.03/40, Lurgi Oel Gas Chemie GmbH, 60295 Frankfurt/Main (2003)

    Google Scholar 

  11. Adkins, Perkins, J. Phys. Chem. 32, 219 (1928)

    Google Scholar 

  12. H. Knözinger, Angew. Chem. Int. Ed. 7, 791 (1968)

    Google Scholar 

  13. J.R. Jain, C.N. Pillai, J. Catal. 9, 322 (1967)

    Google Scholar 

  14. H. Knozinger, R. Kohne, J. Catal. 5, 264 (1966)

    Google Scholar 

  15. K.L. Ng, Ph.D. Thesis, Imperial College of Science, Medicine and Technology, London, 1999

    Google Scholar 

  16. S.G. Hindin, S.W. Weller, J. Phys. Chem. 60, 1501 (1956)

    Google Scholar 

  17. S.W. Weller, S.G. Hindin, J. Phys. Chem. 60, 1506 (1956)

    Google Scholar 

  18. B. Höhlein, Th. Grube, P. Biedermann, H. Bielawa, G. Erdmann, L. Schlecht, G. Isenberg, R. Edinger, Methanol als Energieträger, Schriften des Forschungszentrums Jülich, Reihe Energietechnik/Energy Technology Band/Volume 28

    Google Scholar 

  19. T.H. Fleisch, A. Basu, M.J. Gradassi, J.G. Masin, Stud. Surf. Sci. Catal. 107, 117–125 (1997)

    Google Scholar 

  20. T.A. Semelsberger, R.L. Borup, H.L. Greene, J. Power Sour. 156, 497–511 (2006)

    Google Scholar 

  21. M. Stiefel, R. Ahmad, U. Arnold, M. Döring, Fuel Process. Technol. 92, 1466–1474 (2011)

    Google Scholar 

  22. PERP Program: Dimethyl Ether Technology and Markets. http://www.chemsystems.com/about/cs/news/items/PERP%200708S3_DME.cfm, 6th June 2013

  23. Hubert de Mestier du Bourg, 23rd World Gas Conference, Amsterdam 2006: http://www.igu.org/html/wgc2006/pdf/paper/add10696.pdf, 6th June 2013

  24. T. Ogawa, N. Inoue, T. Shikada, Y. Ohno, J. Nat. Gas Chem. 12, 219–227 (2003)

    Google Scholar 

  25. W. Balthasar, W. Hilsebein: Methanol as a Feedstock for Power, Fuel and Olefins, in ‘Nitrogen & Methanol’, p. 261, January/February, 2003

    Google Scholar 

  26. U. Wagner, W. Liebner, ‘Gas To Chemicals: Advanced technologies for natural gas monetisation’ in 12th International Oil, Gas and Petrochemical Congress, Iran 2007

    Google Scholar 

  27. http://www.syngasrefiner.com/dme/dmepres/HiroshiFukuyama_pres1.pdf, Toyo Engineering Corporation, 2005

  28. G. Yang, N. Tsubaki, J. Shamoto, Y. Yoneyama, Y. Zhang, J. Am. Chem. Soc. 132, 8129–8136 (2010)

    Google Scholar 

  29. R. Ahmad, U. Arnold, M. Döring, in Abstract 12th ICC 2012

    Google Scholar 

  30. E. Unneberg, S. Kolboe, Formation of p-Xylene from Methanol over H-ZSM-5, in Methane Conversion, ed. by D.M. Bibby, C.D. Chang, R.F. Howe, S. Yurchak (Elsevier Science Publishers B.V, Amsterdam, 1988)

    Google Scholar 

  31. M. Conte, J.A. Lopez-Sanchez, Q. He, D.J. Morgan, Y. Ryabenkova, J.K. Bartley, A.F. Carley, S.H. Taylor, C.J. Kiely, K. Khalid, G.J. Hutchings, Catal Sci. Technol. 2, 105–112 (2012)

    Google Scholar 

  32. D. Zeng, J. Yang, J. Wang, J. Xu, Y. Yang, C. Ye, F. Deng, Microporous Mesoporous Mater. 98, 214–219 (2007)

    Google Scholar 

  33. C.P. Nicolaides, N.P. Sincadu, M.S. Scurrell, Catal. Today 71, 429 (2001)

    Google Scholar 

  34. J.A. Biscardi, E. Iglesia, J. Catal. 182, 117 (1999)

    Google Scholar 

  35. C.D. Gosling, F.P. Wilcher, L. Sullivan, R.A. Mountford, Hydrocarb. Process. 69, Dec 1991

    Google Scholar 

  36. S. Pradhan, R. Lloyd, J.K. Bartley, D. Bethell, S. Golunski, R.L. Jenkins, G.J. Hutchings, Chem. Sci. 3, 2958–2964 (2012)

    Google Scholar 

  37. J. Burger, M. Siegert, E. Ströfer, M. Nilles, H. Hasse, AIChE Annual Meeting, 2011. http://www.aiche.org/cei/resources/chemeondemand/conference-presentations/polyoxymethylene-dimethyl-ethers-components-tailored-diesel-fuel-properties-synthesis-and, 6th June 2013

  38. G.P. Hagen, M.J. Spangler, US Patent 6,166,266, 2000

    Google Scholar 

  39. H.-J Arpe, Industrielle Organische Chemie: Bedeutende Vor- und Zwischenprodukte, Wiley-VCH, Weinheim, 6. Vollständig überarbeitete Auflage, p. 176 (2007)

    Google Scholar 

  40. Helv. Chim. Acta 8, 64 (1925)

    Google Scholar 

  41. Ann. 474, 213, (1929)

    Google Scholar 

  42. Dupont patent US-2,449,469. Cited from EP1070755

    Google Scholar 

  43. D.S. Moulton, D.W. Naegeli, Southwest Research Institute, United States Patent, 5,746,785 May 5, 1998

    Google Scholar 

  44. R. Patrini, M. Marchionna, EP1070755, 2001

    Google Scholar 

  45. E. Stroefer, R. Sinnen, O. Schweers, J. Thiel, H. Hasse, WO/2008/074704

    Google Scholar 

  46. E. Jacob, WO/2011/012339

    Google Scholar 

  47. Diesel Fuel News, July 9, 2001 cited by Jack Peckham http://findarticles.com/p/articles/mi_m0CYH/is_14_5/ai_76908160/

  48. D. Sanfilippo, R. Patrini, M. Marchionna, Patent US7,235,113

    Google Scholar 

References to Section 6.5.1

  1. G. Olah, A. Goeppert, S. Prakash, Beyond Oil and Gas: The Methanol Economy (Wiley-VCH, Weinheim, 2009)

    Google Scholar 

  2. J.C. Amphlett, M.J. Evans, R.A. Jones, R.F. Mann, R.D. Weir, Can. J. Chem. Eng. 63, 605–611 (1985)

    Google Scholar 

  3. G. Colsmann, Dissertation, Berichte des Forschungszentrums Jülich, Jül-3127, Jülich 1995

    Google Scholar 

  4. V. Formanski, dissertation, Fortschritt-Berichte VDI, Reihe 3 Verfahrenstechnik (VDI Verlag GmbH, Düsseldorf, 2000)

    Google Scholar 

  5. J.C. Amphlett, M.J. Evans, R.A. Jones, R.F. Mann, R.D. Weir, Can. J. Chem. Eng. 59(4), 720–727 (1981)

    Google Scholar 

  6. B. Ganser, Dissertation, Berichte des Forschungszentrums Jülich, Jül-2748, Jülich 1993

    Google Scholar 

  7. W. Wiese, B. Emonts, R. Peters, Int. J. Power Sour. 106, 249–257 (1999)

    Google Scholar 

  8. M.S. Wainwright, C.J. Jiang, D.L. Trimm, N.W. Cant, Appl. Catal. 97, 145–158 (1993)

    Google Scholar 

  9. M.S. Wainwright, C.J. Jiang, D.L. Trimm, N.W. Cant, Appl. Catal. 93, 245–255 (1993)

    Google Scholar 

  10. Messer Group GmbH, Variocarb-therm-process, can be found under http://www.messergroup.com/de/Daten/Fachbroschueren/Metallurgie/Variocarb-therm.pdf, Krefeld, 2012

  11. Air Liquide Deutschland GmbH, Alnat C™-process, can be found under http://www.airliquide.de/loesungen/business/metall/equipment/alnatc.html, Düsseldorf, 2013

  12. Westfalen AG, Tempron ®-process, can be found under http://www.westfalen-ag.de/fileadmin/user_uploads/Westfalen_AG/Technische_Gase/Allgemein/Prospekte_Technische_Gase/Perfekte_Atmos_Tempron.pdf, Münster, 2013

  13. T. Weiss, Dissertation, Saarbrücken, 2008

    Google Scholar 

  14. L. Pettersson, K. Sjostrom, Combust. Sci. Technol. 80, 265–303 (1991)

    Google Scholar 

  15. J.C. Brown, E. Gulari, Catal. Commu. 5, 431–436 (2004)

    Google Scholar 

  16. Caloric Anlagenbau GmbH, Caloric HM Plant for H 2 Generation by Methanol Reforming, can be found under http://www.caloric.com/en/produkte/h2-generation/methanol-reforming/methanol-reforming.html, Graefelfing, 2013

  17. P. Neumann, F. von Linde, inform, 14, 5, 313-315 (2003)

    Google Scholar 

  18. P. Neumann, F. von Linde, MPT. Metall. Plant Technol. Int. 2, 72–75 (2003)

    Google Scholar 

  19. Mahler AGS GmbH, Process description for Hydroform-M plant, can be found under http://www.mahler-ags.com/hydrogen/hydroform-m.htm, Stuttgart, 2013

  20. Mahler AGS GmbH, Process description for Hydroform-M plant, can be found under http://www.mahler-ags.com/hydrogen/hydroswing.htm, Stuttgart, 2013

  21. Air Products and Chemicals, Inc., Hydrogen Recovery and Purification, http://www.airproducts.com/products/Gases/supply-options/prism-membrane-hydrogen-recovery-and-purification.aspx, Allentown, 2013

  22. UOP LLC, Hydrogen selection matrix, www.uop.com/uop-hydrogen-selection-matrix, des Plaines, 2013

References to Section 6.5.2

  1. F. Asinger, Methanol: Chemie- und Energierohstoff. Die Mobilisation der Kohle (Springer, Berlin, Germany 1986), p. 407

    Google Scholar 

  2. G.A. Olah, A. Goeppert, G.K.S. Prakash, Beyond Oil and Gas: The Methanol Economy (Wiley-VCH Verlag, Weinheim, Germany, 2006), p. 304

    Google Scholar 

  3. A.J. Appleby, F.R. Foulkes, Fuel Cell Handbook (Van Nostrand Reinhold Int. Co, New York, 1989), p. 763

    Google Scholar 

  4. E.W. Justi, A. Winsel, Kalte Verbrennung, Fuel Cells (Franz Steiner, Wiesbaden Germany, 1962), p. 414

    Google Scholar 

  5. W. Vielstich, Translated by Ives DJG. Fuel Cells (Wiley-VCH, Weinheim, Germany, 1965/70), p. 502

    Google Scholar 

  6. W. Vielstich, A. Lamm, H. Gasteiger (eds.), Handbook of Fuel Cells (Wiley, Chichester, UK, 2003), vol 1–4, p. 2606

    Google Scholar 

  7. G. Sandstede, Elektrochemische Brennstoffzellen, in Fortschritte der Chemischen Forschung (Springer, Berlin, Heidelberg, New York, 1967), pp. 171–221

    Google Scholar 

  8. G. Sandstede (ed.), From Electrocatalysis to Fuel Cells (University of Washington Press, Seattle and London, 1972), p. 415

    Google Scholar 

  9. H.A. Liebhafsky, E.J. Cairns, Fuel Cells and Fuel Batteries (Wiley, London, 1968), p. 692

    Google Scholar 

  10. J.O.M. Bockris, S. Srinivasan, Fuel Cells: Their Electrochemistry (McGraw-Hill Book Company, London, Sydney, Toronto, Mexico, 1969), p. 660

    Google Scholar 

  11. F. von Sturm, Elektrochemische Stromerzeugung (Verlag Chemie, Weinheim, Germany, 1969), p. 190

    Google Scholar 

  12. H.H. von Döhren, K.J. Euler, Brennstoffelemente, 6th edn., VARTA-Fachbuchreihe Bd 6, (VDI, Düsseldorf, Germany, 1971), p. 223

    Google Scholar 

  13. A.K. Kordesch, G. Simader, Fuel Cells and their Applications (VCH Verlagsgesellschaft Weinheim, Germany, 1996)

    Google Scholar 

  14. A. Heinzel, P. Beckhaus, Brennstoffzellen für portable Anwendungen: kleine Energiepakete (2006). GDCh-Wochenschau 32b: online: http://www.aktuelle-wochenschau.de/2006/woche32b/woche32b.html, p. 5

  15. V.S. Bagotsky, Fuel cells: Problems and solutions (Wiley, New York, 2009), p. 322

    Google Scholar 

  16. J. Garche, Ch. Dyer, P. Moseley, Z. Ogumi, D. Rand, B. Scrosati (eds.), Encyclopedia of Electrochemical Power Sources (Elsevier, Amsterdam, 2009). (vol 1–5)

    Google Scholar 

  17. D. Stolten (ed.), Hydrogen and Fuel Cells: Fundamentals, Technologies and Applications, Chapters (Wiley-VCH Verlag, Weinheim, Germany, 2010), p. 878

    Google Scholar 

  18. D. Stolten (ed.), Hydrogen Energy (Wiley-VCH Weinheim, 2010)

    Google Scholar 

  19. G. Kolb, Fuel processing for fuel cells (Wiley-VCH, Weinheim Germany, 2008), p. 412

    Google Scholar 

  20. W. Grot, Perfluorinated cation exchange polymers, Chem. Ing. Tech. 47, MS260/75, p. 617 (1975)

    Google Scholar 

  21. T. Iwasita, Methanol and CO electrooxidation, vol 2, eds. by W. Vielstich, A. Lamm, H. Gasteiger, Handbook of Fuel Cells (Wiley, Chichester, UK, 2003), pp. 603–624

    Google Scholar 

  22. A. Heinzel, Stand der Technik von Polymer-Elektrolyt-Membran-Brennstoffzellen—ein Überblick. CIT 81: 567–571 (Special Issue: Brennstoffzellen und Wasserstofftechnologie) (2009)

    Google Scholar 

  23. A. Heinzel, G. Bandlamudi, W. Lehnert, High Temperature PEMFCs, in Encyclopedia of Electrochemical Power Sources, ed. by J. Garche, Ch. Dyer, P. Moseley, Z. Ogumi, D. Rand, B. Scrosati (Elsevier, Amsterdam, 2009), pp. 951–957. (vol 2)

    Google Scholar 

  24. L. Gubler, D. Kramer, J. Belack, Ö. Ünsal, ThJ Schmidt, G.G. Scherer, A Polybenzimidazole-Based Membrane for the Direct Methanol Fuel Cell. J. Electrochem. Soc. 154, B981–B987 (2007)

    Google Scholar 

  25. Q. Wang, G.Q. Sun, L.H. Jiang, Q. Xin, S.G. Sun, Y.X. Jiang, S.P. Chen, Z. Jusys, R.J. Behm, Adsorption and oxidation of ethanol on colloid-based Pt/C, PtRu/C and Pt3Sn/C catalysts: In situ FTIR spectroscopy and on-line DEMS Studies, Phys. Chem. Chem. Phys. 9, pp. 2686–2696 (2007), www.rsc.org/pccp/altfuel

  26. Tannenberger, in Sandstede G (ed) (1972) From Electrocatalysis to Fuel Cells, 415 pages, University of Washington Press, Seattle and London

    Google Scholar 

  27. A. Heinzel, R. Holze, C.H. Hamann, J.K. Blum, The electrooxidation of methanol and formaldehyde at a platinum electrode: A SEESR study of radical intermediates. Electrochim. Acta 34, 657 (1989)

    Google Scholar 

  28. S. Wasmus, A. Küver, Methanol oxidation and direct methanol fuel cells_a selective review. J. Electroanal. Chem. 461, 14–31 (1999)

    Google Scholar 

  29. V.S. Bagotsky, Y.S. Vassiliev, O.A. Khazova (1977) Generalized scheme of chemisorption, electrooxidation and electroreduction of simple organic compounds on platinum group metals, J. Electroanal. Chem. 81, 229

    Google Scholar 

  30. A. Hamnett (2003) Direct methanol fuel cells (DMFC). In: Vielstich W, Lamm A, Gasteiger H (eds) Handbook of Fuel Cells, Vol. 1: 305-322, Wiley, Chichester, UK

    Google Scholar 

  31. M. Neergat, D. Leveratto, U. Stimming, Catalysts for Direct Methanol Fuel Cells. Fuel Cells 2(1), 25–30 (2002)

    Google Scholar 

  32. V.S. Bagotsky, Y.B Vassilyev (1964 and 67) Electrochimica Acta 9, 869 and 12, 1323

    Google Scholar 

  33. H. Binder, A. Köhling, G. Sandstede, The Anodic Oxidation of Methanol on Raney-Type Catalysts of Platinum Metals, in Hydrocarbon Fuel Cell Technology, ed. by B.S. Baker (Academic Press, New York and London, 1965), pp. 91–102

    Google Scholar 

  34. O.A. Petry, B.I. Podlovchenko, A.N. Frumkin, H. Lal, J. Electroanal. Chem. 10, 253 (1965)

    Google Scholar 

  35. J.-F. Drillet, R. Dittmeyer, K. Jüttner, L. Li, K.-M. Mangold, New composite DMFC anode with PEDOT as a mixed conducter and catalyst support. Fuel Cells 6(6), 432–438 (2006)

    Google Scholar 

  36. C. Cremers, M. Scholz, W. Seliger, A. Racz, W. Knechtel, J. Rittmayr, F. Grafwallner, H. Peller, U. Stimming, Developments for improved direct methanol fuel cell stacks for portable power. Fuel Cells 7(1), 21–31 (2007)

    Google Scholar 

  37. A.S. Arico, V. Baglio, V. Antonucci (2009) Direct Methanol Fuel Cells: History, Status and Perspectives. In: Liu H, and Zhang J (eds) Electrocatalysis of Direct Methanol Fuel Cells:_From Fundamentals to Applications, Hardcover, Chapter 1: 1-78, Wiley, Chichester, UK, and Wiley Online Library, 582 pages: http://media.wiley.com/product_data/excerpt/75/35273237/3527323775.pdf

  38. H. Liu, J. Zhang (2009) Electrocatalysis of Direct Methanol Fuel Cells: From Fundamentals to Applications, 606 pages, Wiley-VCH Verlag, Weinheim, Germany http://eu.wiley.com/WileyCDA/WileyTitle/productCd-3527323775.html

  39. M. Watanabe, H. Uchida (2010) Catalysts for the electro-oxidation of small molecules, 18 pages, Wiley Online Library: http://onlinelibrary.wiley.com/doi/10.1002/9780470974001.f500007/full, http://onlinelibrary.wiley.com/doi/10.1002/9780470974001.f500007/pdf

  40. J. Wu, F. Hu, P.K. Shen, C.M. Li, Z. Wei, One-step preparation of Pt on pretreated multiwalled carbon nanotubes for methanol electrooxidation. Fuel Cells 10(1), 106–110 (2010)

    Google Scholar 

  41. C. Zhou, F. Peng, H. Wang, H. Yu, J. Yang, X. Fu, Facile preparation of an excellent Pt-RuO2-MnO2/CNTs nanocatalyst for anodes of direct methanol fuel cells. Fuel Cells 11(2), 301–308 (2011)

    Google Scholar 

  42. H. Behret, H. Binder, G. Sandstede, Inorganic and Organic Non-Noble Metal Containing Electrocatalysts for Fuel Cells, in Electrocatalysis, ed. by M.W. Breiter (The Electrochemical Society Princeton, N.J, 1974), pp. 319–338

    Google Scholar 

  43. C. Fischer, A. Alonso-Vante, S. Fiechter, H. Tributsch, J. Appl. Chem. 25, 1004 (1995)

    Google Scholar 

  44. T.S. Zhao, C. Xu, Direct Methanol Fuel Cell: Overview Performance and Operational Conditions, in Encyclopedia of Electrochemical Power Sources, Vol 2: 381-389, ed. by J. Garche, Ch. Dyer, P. Moseley, Z. Ogumi, D. Rand, B. Scrosati (Elsevier, Amsterdam, 2009)

    Google Scholar 

  45. T.S. Zhao, Z.X. Liang, J.B. Xu, Overview (Direct Alcohol Fuel Cells), in Encyclopedia of Electrochemical Power Sources, Vol 2: 362-369, ed. by J. Garche, Ch. Dyer, P. Moseley, Z. Ogumi, D. Rand, B. Scrosati (Elsevier, Amsterdam, 2009)

    Google Scholar 

  46. N.K. Beck, B. Steiger, G.G. Scherer, A. Wokaun, Methanol tolerant oxygen reduction catalysts derived from electrochemically pre-treated Bi2Pt2-yIryO7 pyrochlores. Fuel Cells 6, 26–30 (2006)

    Google Scholar 

  47. A.M. Remona, K.L.N. Phani, Study of methanol-tolerant oxygen reduction reaction at Pt–Bi/C bimetallic nanostructured catalysts. Fuel Cells 11(3), 385–393 (2011)

    Google Scholar 

  48. H. Wang, J. Liang, L. Zhu, F. Peng, H. Yu, J. Yang, High oxygen-reduction-activity and methanol-tolerance cathode catalyst Cu/PtFe/CNTs for direct methanol fuel cells. Fuel Cells 10(1), 99–105 (2010)

    MATH  Google Scholar 

  49. J. Yang, C.H. Cheng, W. Zhou, J.Y. Lee, Z. Liu, Methanol-tolerant heterogeneous PdCo@PdPt/C electrocatalyst for the oxygen reduction reaction. Fuel Cells 10(6), 907–913 (2010)

    Google Scholar 

  50. Ch. Hartnig, L. Jörissen, J. Kerres, W. Lehnert, J. Scholta, Polymer electrolyte membrane fuel cells, in Materials for Fuel Cells, ed. by M. Gasik (Woodhead Publisher Ltd, Cambridge, 2008), pp. 101–184

    Google Scholar 

  51. A. Winsel, Galvanische Elemente, Brennstoffzellen. In: Ullmanns Encyclopädie. Bd 12, 113–136 (1974)

    Google Scholar 

  52. A. Heinzel, V.M. Barragán, A review of the state-of-the-art of methanol crossover in direct methanol fuel cells. J. Power Sources 84, 70 (1999)

    Google Scholar 

  53. Jörissen L, and Gogel V (2009) Direct Methanol: Overview. In: Garche J, Dyer Ch, Moseley P, Ogumi Z, Rand D, and Scrosati B (eds) Encyclopedia of Electrochemical Power Sources, Vol 2: 370-380, Elsevier, Amsterdam

    Google Scholar 

  54. Ch. Hartnig, L. Jörissen, W. Lehnert, J. Scholta, Direct methanol fuel cells, in Materials for Fuel Cells, ed. by M. Gasik (Woodhead Publisher Ltd, Cambridge, 2008), pp. 185–208

    Google Scholar 

  55. N. Neergat, K.A. Friedrich, U. Stimming, New Materials for DMFC MEAs, in Handbook of Fuel Cells, Vol 4: 856-877, ed. by W. Vielstich, A. Lamm, H. Gasteiger (Wiley, Chichester, UK, 2003)

    Google Scholar 

  56. Justi, Winsel 1962

    Google Scholar 

  57. K. Scott, E. Yu (2009) Electrocatalysis in the Direct Methanol Alkaline Fuel Cell. In: Liu H, and Zhang J (eds) Electrocatalysis of Direct Methanol Fuel Cells:_From Fundamentals to Applications, Hardcover, Chapter 13: 487-525, Wiley, Chichester, UK, and Wiley Online Library, 582 pages: http://eu.wiley.com/WileyCDA/WileyTitle/productCd-3527323775.html

  58. H. Binder, A. Köhling, W.H. Kuhn, W. Lindner, G. Sandstede, Hydrogen and methanol fuel cells with air electrodes in alkaline electrolyte, in From Electrocatalysis to Fuel Cells, ed. by G. Sandstede (University of Washington Press, Seattle and London, 1972), pp. 131–141

    Google Scholar 

  59. H. Binder, A. Köhling, G. Sandstede, Effect of alloying components on the catalytic activity of platinum in the case of carbonaceous fuels, in From Electrocatalysis to Fuel Cells, ed. by G. Sandstede (University of Washington Press, Seattle and London, 1972), pp. 43–58

    Google Scholar 

  60. H. Binder, A. Köhling, G. Sandstede, Platinum catalysts modified by adsorption or mixing with inorganic substances, in From Electrocatalysis to Fuel Cells, ed. by G. Sandstede (University of Washington Press, Seattle and London, 1972), pp. 59–80

    Google Scholar 

  61. Fuel Cell (2011) 31 pages, in: Wikipedia: http://en.wikipedia.org/wiki/Fuel_cell

  62. J.B. Hansen (2003) Methanol reformer design considerations. In: Vielstich W, Lamm A, Gasteiger H (eds) Handbook of Fuel Cells, Vol. 3: 141-148, Wiley, Chichester, UK

    Google Scholar 

  63. C. Zhang, Z. Yuan, N. Liu, S. Wang, S. Wang, Study of Catalysts for Hydrogen Production by the High Temperature Steam Reforming of Methanol. Fuel Cells 6(6), 466–471 (2006)

    Google Scholar 

  64. K. von Benda, H. Binder, A. Köhling, G. Sandstede, Electrochemical behaviour of tungsten carbide electrodes, in From Electrocatalysis to Fuel Cells, ed. by G. Sandstede (University of Washington Press, Seattle and London, 1972), pp. 87–100

    Google Scholar 

  65. D. Edlund, Methanol Fuel Cell Systems: Advancing towards Commercialisation, 206 pages (Pan Stanford Publishing Pte, Ltd, Singapure, 2011)

    Google Scholar 

  66. A. Heinzel (2001) Brennstoffzellen im kleinen Leistungsbereich – portable Anwendungen und Batterieersatz. In: Ledjeff-Hey K, Mahlendorf F, and Roes J (eds) Brennstoffzellen, Entwicklung Technologie Anwendung, 2. Ed.: 211-219, C.F.Müller Verlag, Heidelberg

    Google Scholar 

  67. A. Heinzel, C. Hebling, M. Müller, M. Zedda, C. Müller, Fuel cells for low power applications. J. Power Sources 105, 250–255 (2002)

    Google Scholar 

  68. Heinzel A (2010) Brennstoffzellen - Mobil, stationär und portabel; Stand der Entwicklungen heute. GDCh-Wochenschau 33: 4 pages online: http://www.aktuelle-wochenschau.de/2010/w33/woche33.html

  69. S.R. Narayanan, T.I. Valdez, Portable direct methanol fuel cell systems, in Handbook of Fuel Cells, Vol 4: 1133-1141, ed. by W. Vielstich, A. Lamm, H. Gasteiger (Wiley, Chichester, UK, 2003)

    Google Scholar 

  70. A. Heinzel, C. Hebling, Portable PEM Systems, in Handbook of Fuel Cells, Vol 4: 1142-1151, ed. by W. Vielstich, A. Lamm, H. Gasteiger (Wiley, Chichester, UK, 2003)

    Google Scholar 

  71. S.R. Narayanan, T.I. Valdez, N. Rohatgi (2003) DMFC system design for portable applications. In: Vielstich W, Lamm A, Gasteiger H (eds) Handbook of Fuel Cells, Vol. 4: 894-904, Wiley, Chichester, UK

    Google Scholar 

  72. T. Ramsden (2011) Direct methanol fuel cell material handling equipment demonstration, 21 pages, NREL National Renewable Energy Laboratory, US-DoE http://www.hydrogen.energy.gov/pdfs/review11/mt004_ramsden_2011_o.pdf

  73. A. Lamm, J. Müller, System design for transport applications, in Handbook of Fuel Cells, Vol 4: 878-893, ed. by W. Vielstich, A. Lamm, H. Gasteiger (Wiley, Chichester, UK, 2003)

    Google Scholar 

  74. ballard, basf, bp, daimlerchrysler, methanex, statoil (2002) Methanol Fuel Cell Alliance, 236 pages: http://www.methanol.org/Energy/Resources/Fuel-Cells/MFCA-overall-document-from-09_06.aspx

  75. H. Dohle, J. Mergel, D. Stolten, Heat and power management of a direct-methanol-fuel-cell (DMFC) system. J. of Power Sources 111, 268–282 (2006)

    Google Scholar 

  76. J. Mergel, A. Glüsen, Ch. Wannek, Current Status of and Recent Developments in Direct Liquid Fuel Cells, in Hydrogen and Fuel Cells: Fundamentals, Technologies and Applications, Chapter 3: 41–60, ed. by D. Stolten (Wiley-VCH Verlag, Weinheim, Germany, 2010)

    Google Scholar 

  77. A. Glüsen, M. Müller, N. Kimiaie, I. Konradi, J. Mergel, D. Stolten (2010) Manufacturing Technologies for Direct Methanol Fuel Cells (DMFCs). In: 18th World Hydrogen Energy Conference - WHEC 2010 Proceedings, Parallel Sessions Book 1: 219-226, Stolten D, and Grube Th (Eds), Zentralbibliothek Forschungszentrum Jülich 2010, Schriften des Forschungszentrum Jülich, ISBN: 978-3-89336-658-4

    Google Scholar 

  78. H.-P. Schmid, J. Ebner, DaimlerChrysler fuel cell activities, in Handbook of Fuel Cells, Vol 4: 1167-1171, ed. by W. Vielstich, A. Lamm, H. Gasteiger (Wiley, Chichester, UK, 2003)

    Google Scholar 

  79. A. Rodrigues, M. Fronk, B. McCormick, General Motors/OPEL fuel cell activities – Driving towards a successful future, in Handbook of Fuel Cells, Vol 4: 1172-1179, ed. by W. Vielstich, A. Lamm, H. Gasteiger (Wiley, Chichester, UK, 2003)

    Google Scholar 

  80. Garche J (2010) Portable Applications and Light Traction. In: Stolten D (ed) Hydrogen and Fuel Cells: Fundamentals, Technologies and Applications, Chapter 35: 715-734, Wiley-VCH Verlag, Weinheim, Germany

    Google Scholar 

  81. Wärtsilä installs fuel cell unit on vessel (2010) http://www.wartsila.com/en/press-releases/newsrelease357

  82. G. Sandstede, E.J. Cairns, V.S Bagotsky, K. Wiesener (2003) History of low temperature fuel cells. In: Vielstich W, Lamm A, Gasteiger H (eds) Handbook of Fuel Cells, Vol. 1: 145-218, Wiley, Chichester, UK

    Google Scholar 

  83. P. Kurzweil, History: Fuel Cells, in Encyclopedia of Electrochemical Power Sources, Vol 3: 579-595, ed. by J. Garche, Ch. Dyer, P. Moseley, Z. Ogumi, D. Rand, B. Scrosati (Elsevier, Amsterdam, 2009)

    Google Scholar 

  84. H. Hoogers (ed.), Fuel Cell Technology Handbook, 360 pages (CRC Press, Boca Raton, London, 2003)

    Google Scholar 

  85. A. Heinzel, F. Mahlendorf, J. Roes (eds.), Brennstoffzellen Entwicklung-Technologie-Anwendung. 3rd. completly revised and extended Ed. (C.F. Müller Verlag, Heidelberg, 2006)

    Google Scholar 

References to Section 6.5.3

  1. M. Madhaiyan, P. S. Chauhan, W. J. Yim, H. P. D. Boruah, T. M. Sa in Bacteria in Agrobiology: Plant Growth Responses (Ed.: D. K. Maheshwari), Springer Berlin Heidelberg, Berlin, Heidelberg, 2011

    Google Scholar 

  2. J. Schrader, M. Schilling, D. Holtmann, D. Sell, M. Filho, A. Marx, J. Vorholt, Trends Biotechnol. 27(2), 107–115 (2009)

    Google Scholar 

  3. C. Anthony, The biochemistry of methylotrophs, Academic Press (New York, London, 1982)

    Google Scholar 

  4. S.J. Giovannoni, D.H. Hayakawa, H.J. Tripp, U. Stingl, S.A. Givan, J.-C. Cho, H.-M. Oh, J.B. Kitner, K.L. Vergin, M.S. Rappé, Environ. Microbiol. 10, 1771–1782 (2008)

    Google Scholar 

  5. M. E. Lidstrom in The Prokaryotes (Eds.: M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, E. Stackebrandt), Springer, New York, 2006, 618

    Google Scholar 

  6. R. Balasubramanian, S.M. Smith, S. Rawat, L.A. Yatsunyk, T.L. Stemmler, A.C. Rosenzweig, Nature 465, 115–119 (2010)

    Google Scholar 

  7. J.C. Murrell, B. Gilbert, I.R. McDonald, Arch. Microbiol. 173, 325–332 (2000)

    Google Scholar 

  8. R.L. Lieberman, A.C. Rosenzweig, Crit. Rev. Biochem. Mol. Biol. 39, 147–164 (2004)

    Google Scholar 

  9. H. Dalton, Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 1207–1222 (2005)

    Google Scholar 

  10. G.A. Olah, A. Goeppert, G.K.S. Prakash, Beyond oil and gas (The methanol economy, Wiley-VCH, Weinheim, 2006)

    Google Scholar 

  11. C. Anthony, M. Ghosh, Prog. Biophys. Mol. Biol. 69, 1–21 (1998)

    Google Scholar 

  12. P.W. van Ophem, J. van Beeumen, J.A. Duine, Eur. J. Biochem. 212, 819–826 (1993)

    Google Scholar 

  13. L. Chistoserdova, L. Gomelsky, J. A. Vorholt, M. Gomelsky, Y. D. Tsygankov, M. E. Lidstrom, Microbiology (Reading, Engl.) 2000, 146 (Pt 1), 233-238

    Google Scholar 

  14. J.A. Vorholt, Arch. Microbiol. 178, 239–249 (2002)

    Google Scholar 

  15. L. Chistoserdova, Science 281, 99–102 (1998)

    Google Scholar 

  16. A.J. Beardsmore, P.N.G. Aperghis, J.R. Quayle, Microbiology 128, 1423–1439 (1982)

    Google Scholar 

  17. P.J. Large, D. Peel, J.R. Quayle, Biochem. J. 81, 470–480 (1961)

    Google Scholar 

  18. G.J. Crowther, G. Kosaly, M.E. Lidstrom, J. Bacteriol. 190, 5057–5062 (2008)

    Google Scholar 

  19. R. Peyraud, K. Schneider, P. Kiefer, S. Massou, J.A. Vorholt, J.-C. Portais, BMC Syst. Biol. 5, 189 (2011)

    Google Scholar 

  20. S. Vuilleumier, L. Chistoserdova, M.-C. Lee, F. Bringel, A. Lajus, Y. Zhou, B. Gourion, V. Barbe, J. Chang, S. Cruveiller et al., PLoS ONE 4, e5584 (2009)

    Google Scholar 

  21. H. Šmejkalová, T.J. Erb, G. Fuchs, A. Herrera-Estrella, PLoS ONE 5, e13001 (2010)

    Google Scholar 

  22. E. Skovran, G.J. Crowther, X. Guo, S. Yang, M.E. Lidstrom, R. Aramayo, PLoS ONE 5, e14091 (2010)

    Google Scholar 

  23. K. Munk, Biochemie - Zellbiologie (Thieme Verlag, Stuttgart, 2008)

    Google Scholar 

  24. M. T. Madigan, J. M. Martinko, T. D. Brock, Brock Mikrobiologie, Pearson Studium, München [u.a.], 2006

    Google Scholar 

  25. K. Ogata, H. Nishikawa, M. Ohsugi, Agric. Biol. Chem. 33, 1519–1520 (1969)

    Google Scholar 

  26. A. Solà, P. Jouhten, H. Maaheimo, F. Sánchez-Ferrando, T. Szyperski, P. Ferrer, Microbiology 153, 281–290 (2007)

    Google Scholar 

  27. F. Bisby, Y. Roskov, A. Culham, T. Orrell, D. Nicolson, L. Paglinawan, N. Bailly, W. Appeltans, P. Kirk, T. Bourgoin et al., “Species 2000 & ITIS Catalogue of Life, 3rd February 2012. Saccharomycetes”, can be found under www.catalogueoflife.org/col/, 2012

  28. P. Kaszycki, M. Tyszka, P. Malec, H. Kołoczek, Biodegradation 12, 169–177 (2001)

    Google Scholar 

  29. P. Blanco, C. Sieiro, T.G. Villa, FEMS Microbiol. Lett. 175, 1–9 (1999)

    Google Scholar 

  30. M.A. Gleeson, P.E. Sudbery, Yeast 4, 1–15 (1988)

    Google Scholar 

  31. G. Gellissen, G. Kunze, C. Gaillardin, J.M. Cregg, E. Berardi, M. Veenhuis, I. van der Klei, FEMS Yeast Res. 5, 1079–1096 (2005)

    Google Scholar 

  32. H. Yurimoto, N. Kato, Y. Sakai, Chem. Record. 5, 367–375 (2005)

    Google Scholar 

  33. R. Caspi, T. Altman, J.M. Dale, K. Dreher, C.A. Fulcher, F. Gilham, P. Kaipa, A.S. Karthikeyan, A. Kothari, M. Krummenacker et al., Nucleic Acids Res. 38, D473–D479 (2009)

    Google Scholar 

  34. O. Negru, O. Csutak, I. Stoica, E. Rusu, T. Vassu, Rom. Biotechnol. Lett. 15, 5369–5375 (2010)

    Google Scholar 

  35. H. Mogren, Process Biochem. 14, 2–4 (1979)

    Google Scholar 

  36. U. Faust, P. Praeve, D.A. Sukatsch, J. Ferment. Technol. 55(6), 609–614 (1977)

    Google Scholar 

  37. D. G. MacLennan, J. S. Gow, D. A. Stringer, Proc. R. Aust. Chem. Inst. 40(3), (1973)

    Google Scholar 

  38. S. Kim, P. Kim, H. Lee, J. Kim, Biotechnol. Lett. 18, 25–30 (1996)

    Google Scholar 

  39. J.H. Choi, J.H. Kim, M. Daniel, J.M. Lebeault, Kor. J. Appl. Microbiol. Biotechnol. 17, 392–396 (1989)

    Google Scholar 

  40. S. B. Pluschkell, M. C. Flickinger, Microbiology (Reading, Engl.) 148, 3223-3233 (2002)

    Google Scholar 

  41. L.K. Shay, H.R. Hunt, G.H. Wegner, J. Ind. Microbiol. 2, 79–85 (1987)

    Google Scholar 

  42. P. Kim, J.-H. Kim, D.-K. Oh, World J. Microbiol. Biotechnol. 19, 357–361 (2003)

    MathSciNet  Google Scholar 

  43. L. Bélanger, M.M. Figueira, D. Bourque, L. Morel, M. Béland, L. Laramée, D. Groleau, C.B. Míguez, FEMS Microbiol. Lett. 231, 197–204 (2004)

    Google Scholar 

  44. A. Crémieux, J. Chevalier, M. Combet, G. Dumenil, D. Parlouar, D. Ballerini, European. J. Appl. Microbiol. 4, 1–9 (1977)

    Google Scholar 

  45. D. Leak in Encyclopedia of Bioprocess Technology, John Wiley & Sons, Inc, 2002

    Google Scholar 

  46. T. Brautaset, Ø.M. Jakobsen, K.D. Josefsen, M.C. Flickinger, T.E. Ellingsen, Appl. Microbiol. Biotechnol. 74, 22–34 (2007)

    Google Scholar 

  47. P. Höfer, Y.J. Choi, M.J. Osborne, C.B. Miguez, P. Vermette, D. Groleau, Microb. Cell Fact. 9, 1–13 (2010)

    Google Scholar 

  48. P. Höfer, P. Vermette, D. Groleau, Biochem. Eng. J. 54, 26–33 (2011)

    Google Scholar 

  49. T. Holscher, U. Breuer, L. Adrian, H. Harms, T. Maskow, Appl. Environ. Microbiol. 76, 5585–5591 (2010)

    Google Scholar 

  50. F. J. Schendel, R. Dillingham, R. S. Hanson, K. Sano, K. Matsui, WO1999020785, 1997

    Google Scholar 

  51. T. Brautaset, Ø.M. Jakobsen, K.F. Degnes, R. Netzer, I. Nærdal, A. Krog, R. Dillingham, M.C. Flickinger, T.E. Ellingsen, Appl. Microbiol. Biotechnol. 87, 951–964 (2010)

    Google Scholar 

  52. D. I. Stirling (Celgene Corporation (Warren, NJ)),US 5071976, 1991

    Google Scholar 

  53. D.K. Oh, J.H. Kim, T. Yoshida, Biotechnol. Bioeng. 54, 115–121 (1997)

    Google Scholar 

  54. Z. Omer, R. Tombolini, A. Broberg, B. Gerhardson, Plant Growth Regul. 43, 93–96 (2004)

    Google Scholar 

  55. M.E. Lidstrom, L. Chistoserdova, J. Bacteriol. 184(7),1818 (2002)

    Google Scholar 

  56. R.L. Koenig, R.O. Morris, J.C. Polacco, J. Bacteriol. 184, 1832–1842 (2002)

    Google Scholar 

  57. C. B. Miguez, M. M. Figueira, L. Laramee, J. C. Murrell, WO2003046226, 2003

    Google Scholar 

  58. M. M. Figueira, L. Laramee, J. C. Murrell, L. Belanger, D. Groleau, C. B. Miguez, US 20030104527, 2003

    Google Scholar 

  59. J. Gutiérrez, D. Bourque, R. Criado, Y.J. Choi, L.M. Cintas, P.E. Hernández, C.B. Míguez, FEMS Microbiol. Lett. 248, 125–131 (2005)

    Google Scholar 

  60. D. Byrom, M. Carver (Imperial chemical Industries PLC), US 5077212, 1991

    Google Scholar 

  61. K.A. FitzGerald, M.E. Lidstrom, Biotechnol. Bioeng. 81, 263–268 (2003)

    Google Scholar 

  62. Y.J. Choi, D. Bourque, L. Morel, D. Groleau, C.B. Míguez, Appl. Environ. Microbiol. 72, 753–759 (2006)

    Google Scholar 

  63. Y.J. Choi, C.B. Miguez, B.H. Lee, Appl. Environ. Microbiol. 70, 3213–3221 (2004)

    Google Scholar 

  64. C. Anthony, Adv. Microb. Physiol. 27, 113–210 (1986)

    Google Scholar 

  65. G.H. Wegner, W. Harder, Antonie Van Leeuwenhoek 53, 29–36 (1987)

    Google Scholar 

  66. T. Egli, N. Lindley, J. Gen. Microbiol. 130, 3239–3249 (1984)

    Google Scholar 

  67. L. Dijkhuizen, T.A. Hansen, W. Harder, Trends Biotechnol. 3, 262–267 (1985)

    Google Scholar 

  68. N. Kato, M. Kano, Y. Tani, K. Ogata, Agric. Biol. Chem. 38, 111–116 (1974)

    Google Scholar 

  69. R. Wichmann, C. Wandrey, A.F. Bückmann, M.-R. Kula, Biotechnol. Bioeng. 23, 2789–2802 (1981)

    Google Scholar 

  70. B. Bossow, C. Wandrey, Ann. N. Y. Acad. Sci. 506, 325–336 (1987)

    Google Scholar 

  71. V.I. Tishkov, V.O. Popov, Biochemistry Mosc. 69, 1252–1267 (2004)

    Google Scholar 

  72. P. Fröhlich, K. Albert, M. Bertau, Org. Biomol. Chem. 9, 7941 (2011)

    Google Scholar 

  73. R. Couderc, J. Baratti, Agric. Biol. Chem. 44, 2279–2289 (1980)

    Google Scholar 

  74. G. Dienys, S. Jarmalavičius, S. Budrien, D. Čitavičius, J. Sereikait, J. Mol. Catal. B Enzym. 21, 47–49 (2003)

    Google Scholar 

  75. Y. Sakai, Y. TANI. Agric. Biol. Chem. 50, 2615–2620 (1986)

    Google Scholar 

  76. M. Zhang, H.Y. Wang, Enzyme Microb. Technol. 16, 10–17 (1994)

    Google Scholar 

  77. G. Gellissen, Appl. Microbiol. Biotechnol. 54, 741–750 (2000)

    Google Scholar 

  78. G. Gellissen, C. P. Hollenberg in Encyclopedia of Food Microbiology (Ed.: Editor-in-Chief: Richard K. Robinson), Elsevier, Oxford, 1999

    Google Scholar 

  79. K. Chitkala in Encyclopedia of Food Microbiology (Ed.: Editor-in-Chief: Richard K. Robinson), Elsevier, Oxford, 1999

    Google Scholar 

  80. M.A. Romanos, J.J. Clare, K.M. Beesley, F.B. Rayment, S.P. Ballantine, A.J. Makoff, G. Dougan, N.F. Fairweather, I.G. Charles, Vaccine 9, 901–906 (1991)

    Google Scholar 

  81. A. Markaryan, C.J. Beall, P.E. Kolattukudy, Biochem. Biophys. Res. Commun. 220, 372–376 (1996)

    Google Scholar 

  82. J.J. Clare, F.B. Rayment, S.P. Ballantine, K. Sreekrishna, M.A. Romanos, Nat. Biotech. 9, 455–460 (1991)

    Google Scholar 

  83. P.A. Romero, M. Lussier, A.M. Sdicu, H. Bussey, A. Herscovics, Biochem. J. 321, 289–295 (1997)

    Google Scholar 

  84. Y. Sakai, T. Rogi, R. Takeuchi, N. Kato, Y. Tani, Appl. Microbiol. Biotechnol. 42, 860–864 (1995)

    Google Scholar 

  85. M.W. de Vouge, A.J. Thaker, I.H. Curran, L. Zhang, G. Muradia, H. Rode, H.M. Vijay, Int. Arch. Allergy Immunol. 111, 385–395 (1996)

    Google Scholar 

  86. G. Gellissen, M. Piontek, U. Dahlems, V. Jenzelewski, J.E. Gavagan, R. DiCosimo, D.L. Anton, Z.A. Janowicz, Appl. Microbiol. Biotechnol. 46, 46–54 (1996)

    Google Scholar 

  87. A. Beauvais, M. Monod, J.-P. Debeaupuis, M. Diaquin, K. Hidemitsu, J.-P. Latgé, J. Biol. Chem. 272, 6238–6244 (1997)

    Google Scholar 

  88. G. Gellissen, Z. A. Janowicz, A. Merckelbach, M. Piontek, P. Keup, U. Weydemann, C. P. Hollenberg, A. W. Strasser, Biotechnology (N.Y.) 9, 291–295 (1991)

    Google Scholar 

  89. M. Hodgkins, P. Sudbery, D. Mead, D.J. Ballance, A. Goodey, Yeast 9, 625–635 (1993)

    Google Scholar 

  90. R. Narciandi, L. Rodriguez, E. Rodriguez, R. Diaz, J. Delgado, L. Herrera, Biotechnol. Lett. 17, 949–952 (1995)

    Google Scholar 

  91. A.F. Mayer, K. Hellmuth, H. Schlieker, R. Lopez-Ulibarri, S. Oertel, U. Dahlems, A.W.M. Strasser, A.P.G.M. van Loon, Biotechnol. Bioeng. 63, 373–381 (1999)

    Google Scholar 

  92. P.M. Smith, C. Suphioglu, I.J. Griffith, K. Theriault, R.B. Knox, M.B. Singh, J. Allergy Clin, Immunol. 98, 331–343 (1996)

    Google Scholar 

  93. M.S. Payne, K.L. Petrillo, J.E. Gavagan, L.W. Wagner, R. DiCosimo, D.L. Anton, Gene 167, 215–219 (1995)

    Google Scholar 

  94. K. N. Faber, P. Haima, W. Harder, M. Veenhuis, G. AB, Curr. Genet. 1994, 25, 305-310

    Google Scholar 

  95. D. Mozley, A. Remberg, W. Gartner, Photochem. Photobiol. 66, 710–715 (1997)

    Google Scholar 

  96. A. Ruddat, P. Schmidt, C. Gatz, S.E. Braslavsky, W. Gärtner, K. Schaffner, Biochemistry 36, 103–111 (1997)

    Google Scholar 

  97. R.G. Buckholz, M.A.G. Gleeson, Nat. Biotech. 9, 1067–1072 (1991)

    Google Scholar 

  98. C. Zurek, E. Kubis, P. Keup, D. Hörlein, J. Beunink, J. Thömmes, M.-R. Kula, C. P. Hollenberg, G. Gellissen, Process Biochem. 1996, 31, 679-689

    Google Scholar 

  99. M. Rodríguez, R. Rubiera, M. Penichet, R. Montesinos, J. Cremata, V. Falcón, G. Sánchez, R. Bringas, C. Cordovés, M. Valdés et al., J. Biotechnol. 33, 135–146 (1994)

    Google Scholar 

  100. E.Z. Monosov, T.J. Wenzel, G.H. Lüers, J.A. Heyman, S. Subramani, J. Histochem. Cytochem. 44, 581–589 (1996)

    Google Scholar 

  101. S.A. Rosenfeld, D. Nadeau, J. Tirado, G.F. Hollis, R.M. Knabb, S. Jia, Protein Expr. Purif. 8, 476–482 (1996)

    Google Scholar 

  102. U. Weydemann, P. Keup, M. Piontek, A.W. Strasser, J. Schweden, G. Gellissen, Z.A. Janowicz, Appl. Microbiol. Biotechnol. 44, 377–385 (1995)

    Google Scholar 

  103. F. Talmont, S. Sidobre, P. Demange, A. Milon, L.J. Emorine, FEBS Lett. 394, 268–272 (1996)

    Google Scholar 

  104. S.C. Gilbert, H. van Urk, A.J. Greenfield, M.J. McAvoy, K.A. Denton, D. Coghlan, G.D. Jones, D.J. Mead, Yeast 10, 1569–1580 (1994)

    Google Scholar 

  105. J.M. Cregg, J.F. Tschopp, C. Stillman, R. Siegel, M. Akong, W.S. Craig, R.G. Buckholz, K.R. Madden, P.A. Kellaris, G.R. Davis et al., Nat. Biotechnol. 5, 479–485 (1987)

    Google Scholar 

  106. Z.A. Janowicz, K. Melber, A. Merckelbach, E. Jacobs, N. Harford, M. Comberbach, C.P. Hollenberg, Yeast 7, 431–443 (1991)

    Google Scholar 

  107. T. Boehm, S. Pirie-Shepherd, L.-B. Trinh, J. Shiloach, J. Folkman, Yeast 15, 563–572 (1999)

    Google Scholar 

  108. C.K. Raymond, T. Bukowski, S.D. Holderman, A.F.T. Ching, E. Vanaja, M.R. Stamm, Yeast 14, 11–23 (1998)

    Google Scholar 

  109. P.F. Gallet, H. Vaujour, J.M. Petit, A. Maftah, A. Oulmouden, R. Oriol, C. Le Narvor, M. Guilloton, R. Julien, Glycobiology 8, 919–925 (1998)

    Google Scholar 

  110. D. Bourque, B. Ouellette, G. André, D. Groleau, Appl. Microbiol. Biotechnol. 37, 7–12 (1992)

    Google Scholar 

  111. D. Bourque, Y. Pomerleau, D. Groleau, Appl. Microbiol. Biotechnol. 44, 367–376 (1995)

    Google Scholar 

  112. T. Suzuki, T. Yamane, S. Shimizu, Appl. Microbiol. Biotechnol. 23, 322–329 (1986)

    Google Scholar 

  113. F.J. Schendel, C.E. Bremmon, M.C. Flickinger, M. Guettler, R.S. Hanson, Appl. Environ. Microbiol. 56(4), 963–970 (1990)

    Google Scholar 

  114. R. Westlake, Chem. Ing. Technol. 58, 934–937 (1986)

    Google Scholar 

  115. J.D. Windass, M.J. Worsey, E.M. Pioli, D. Pioli, P.T. Barth, K.T. Atherton, E.C. Dart, D. Byrom, K. Powell, P.J. Senior, Nature 287, 396–401 (1980)

    Google Scholar 

  116. P.J. Senior, J. Windass, Biotechnol. Lett. 2, 205–210 (1980)

    Google Scholar 

  117. K. Muttzall, Einführung in die Fermentationstechnik (Behr, Hamburg, 1993)

    Google Scholar 

  118. G.L. Solomons, CRC Crit. Rev. Biotechnol. 1, 21–58 (1985)

    Google Scholar 

  119. E.W. Jwanny, M.M. Rashad, Acta Biotechnol. 7, 31–38 (1987)

    Google Scholar 

  120. A.M. Henstra, J. Sipma, A. Rinzema, A.J.M. Stams, Curr. Opin. Biotechnol. 18, 200–206 (2007)

    Google Scholar 

  121. E. H. Wegner, US 4414329, 1981

    Google Scholar 

  122. R. Renneberg, Biotechnologie für Einsteiger, Elsevier, Spektrum (Akad. Verl, Heidelberg, 2006)

    Google Scholar 

  123. U. O. Ugalde, J. I. Castrillo in Applied Mycology and Biotechnology : Agriculture and Food Production (Ed.: George G. Khachatourians and Dilip K. Arora), Elsevier, 2002

    Google Scholar 

  124. G.H. Wegner, FEMS Microbiol. Lett. 87, 279–284 (1990)

    Google Scholar 

  125. A. Onnis-Hayden, A.Z. Gu, Proceedings of the Water Environment Federation 17, 253–273 (2008)

    Google Scholar 

  126. I. Purtschert, H. Siegrist, W. Gujer, Water Sci. Technol. 33(12), 117–126 (1996)

    Google Scholar 

  127. M. Ginige, J. Bowyer, L. Foley, J. Keller, Z. Yuan, Biodegradation 20(2), 221–234 (2009)

    Google Scholar 

  128. H. Lee, J.A. Brereton, D.S. Mavinic, R.A. Fiorante, W.K. Oldham, J.K. Paisley, Environ. Technol. 22(10), 1223–1235 (2001)

    Google Scholar 

  129. M. Komorowska-Kaufman, H. Majcherek, E. Klaczyński, Process Biochem. 41(5), 1015–1021 (2006)

    Google Scholar 

  130. S.D. Minteer, B.Y. Liaw, M.J. Cooney, Curr. Opin. Biotechnol. 18(3), 228–234 (2007)

    Google Scholar 

  131. J. Kim, H. Jia, P. Wang, Biotechnol. Adv. 24(3), 296–308 (2006)

    Google Scholar 

  132. P.L. Yue, K. Lowther, Chem. Eng. J. 33, B69–B77 (1986)

    Google Scholar 

  133. P. Kar, H. Wen, H. Li, S.D. Minteer, S.C. Barton, J. Electrochem. Soc. 158(5), B580–B586 (2011)

    Google Scholar 

  134. G.T.R. Palmore, H. Bertschy, S.H. Bergens, G.M. Whitesides, J. Electroanal. Chem. 443(1), 155–161 (1998)

    Google Scholar 

  135. A. A. Karyakin, in Electropolymerization. Wiley-VCH Verlag GmbH & Co. KGaA, 2010, 93-110

    Google Scholar 

  136. A. A. Karyakin, E.E. Karyakina, W. Schuhmann, H.-L. Schmidt, S.D. Varfolomeyev, Electroanalysis 6(10), 821–829 (1994)

    Google Scholar 

  137. P.K. Addo, R.L. Arechederra, S.D. Minteer, Electroanalysis 22(7–8), 807–812 (2010)

    Google Scholar 

  138. R.A. Rincón, C. Lau, K.E. Garcia, P. Atanassov, Electrochim. Acta 56(5), 2503–2509 (2011)

    Google Scholar 

  139. X.-C. Zhang, A. Ranta, A. Halme, Biosens. Bioelectron. 21(11), 2052–2057 (2006)

    Google Scholar 

  140. R. Obert, B.C. Dave, J. Am. Chem. Soc. 121, 12192–12193 (1999)

    Google Scholar 

  141. H. Wu, Z.Y. Jiang, S.W. Xu, S.F. Huang, Chin. Chem. Lett. 14(4), 423–425 (2003)

    Google Scholar 

  142. F. Baskaya, X. Zhao, M. Flickinger, P. Wang, Appl. Biochem. Biotechnol. 162(2), 391–398 (2010)

    Google Scholar 

  143. S. Kuwabata, R. Tsuda, K. Nishida, H. Yoneyama, Chem. Lett. 22(9), 1631 (1993)

    Google Scholar 

  144. S. Kuwabata, R. Tsuda, H. Yoneyama, J. Am. Chem. Soc. 116(12), 5437–5443 (1994)

    Google Scholar 

  145. Y. Amao, T. Watanabe, J. Mol. Catal. B Enzym. 44(1), 27–31 (2007)

    Google Scholar 

  146. Y. Amao, T. Watanabe, Appl. Catal., B 86(3-4), 109–113 (2009)

    Google Scholar 

  147. F. E. Zilly, J. P. Acevedo, W. Augustyniak, A. Deege, U. W. Häusig, M. T. Reetz, Angew. Chem., Int. Ed. 50(12), 2720–2724 (2011)

    Google Scholar 

  148. B. Alber, Appl. Microbiol. Biotechnol. 89(1), 17–25 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martin Bertau , Martin Bertau , Martin Bertau , Ulrich-Dieter Standt , Stefan Buchholz , Friedrich Schmidt , Lydia Reichelt , Friedrich Schmidt , Sven Pohl , Friedrich Schmidt , Jürgen Roes , Gerd Sandstede or Martin Bertau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bertau, M. et al. (2014). Methanol Utilisation Technologies. In: Bertau, M., Offermanns, H., Plass, L., Schmidt, F., Wernicke, HJ. (eds) Methanol: The Basic Chemical and Energy Feedstock of the Future. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39709-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39709-7_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39708-0

  • Online ISBN: 978-3-642-39709-7

  • eBook Packages: EnergyEnergy (R0)