Advertisement

Methanol Utilisation Technologies

  • Martin BertauEmail author
  • Hans Jürgen Wernicke
  • Friedrich Schmidt
  • Ulrich-Dieter Standt
  • Frank Seyfried
  • Stefan Buchholz
  • Gereon Busch
  • Markus Winterberg
  • Lydia Reichelt
  • Carsten Pätzold
  • Sven Pohl
  • Ludolf Plass
  • Jürgen Roes
  • Michael Steffen
  • Gerd Sandstede
  • Angelika Heinzel
  • Sebastian Hippmann
  • Dirk Holtmann
  • Frank Sonntag
  • Thomas Veith
  • Jens Schrader
Chapter

Abstract

Oil and gas are raw materials—the availability of which is prognosticated to run short in the near future. The peak oil discussion is an example generally perceived as proof of this development to come.

References

  1. 1.
    K.S. Deffeyes, Hubbert’s Peak: The Impending World Oil Shortage (Princeton University Press, Princeton, 2011)Google Scholar
  2. 2.
    M.K. Hubbert, Drill. Prod. Prac. 7–25 (1956)Google Scholar
  3. 3.
    R.W. Bentley, Energ. Policy 30, 189–205 (2002)Google Scholar
  4. 4.
    S. Sorrell, J. Speirs, R. Bentley, A. Brandt, R. Miller, Energ. Policy 38, 5290–5295 (2010)Google Scholar
  5. 5.
    D. Zhu, S. Tao, R. Wang, H. Shen, Y. Huang, G. Shen, B. Wang, W. Li, Y. Zhang, H. Chen, Y. Chen, J. Liu, B. Li, X. Wang, W. Liu, Appl. Energ. 106, 17–24 (2013)Google Scholar
  6. 6.
    New York Times, 13.11.2012Google Scholar
  7. 7.
    R. Bacon, S. Tordo, Crude Oil Price Differentials and Differences in Oil Qualities: A Statistical Analysis (Energy and Water Department, Washington, D.C., 2005). Can be found under http://www.esmap.org/sites/esmap.org/files/08105.TechnicalPaper_CrudeOilPriceDifferentialsandDifferencesinOilQualitiesAStatisticalAnalysis.pdf
  8. 8.
    B. Höhlein, P. Biedermann, T. Grube, Methanol as an Energy Carrier, Schriften des Forschungszentrums Jülich- Reihe Energietechnik/Energy Technology (2006)Google Scholar
  9. 9.
    G.A. Olah, A. Goeppert, G.K.S. Prakash, Beyond Oil and Gas: The Methanol Economy (Wiley-VCH, Weinheim, 2006)Google Scholar
  10. 10.
    A. Kuhlmann, H. May, F.G. Pischinger, Methanol und Wasserstoff: Automobil-Kraftstoffe der Zukunft (Verlag TÜV, Rheinland, 1976)Google Scholar
  11. 11.
    A. Kowalewicz, M. Wojtyniak, Proc. Inst. Mech. Eng., Part D: J. Automobile Eng. 219, 103–125 (2005)Google Scholar
  12. 12.
    Methanol Institute, Methanol Gasoline Blends: Alternative Fuel For Today’s Automobiles and Cleaner ‘Burning Octane For Today’s Oil Refinery. Can be found under http://www.methanol.org/Energy/Transportation-Fuel/Fuel-Blending-Guidelines/Blenders-Product-Bulletin-(Final).aspx (2011)
  13. 13.
    L. Bromberg, W.K. Cheng, Methanol as an Alternative Transportation Fuel in the US: Options for Sustainable and/or Energy-Secure Transportation (2010), can be found under http://www.afdc.energy.gov/pdfs/mit_methanol_white_paper.pdf
  14. 14.
    Methanol Institute, Methanol Transportation Fuel (2011), can be found unter http://www.methanol.org/Energy/Transportation-Fuel.aspx
  15. 15.
    C. Duwig, P. Gabrielson, H. Nielsen, Haldor Topsøe A/S presentation at Marine Days, Gothenburg (2011)Google Scholar
  16. 16.
    P.L. Spath, D.C. Dayton, Preliminary Screening: Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass-Derived Syngas (2003), can be found under http://www.nrel.gov/docs/fy04osti/34929.pdf
  17. 17.
    A.B. Chemrec, Press release from 09.09.2010 (2010)Google Scholar
  18. 18.
    DIN EN 590, Kraftstoffe für KraftfahrzeugeDieselkraftstoffAnforderungen und Prüfverfahren (Beuth, 2011)Google Scholar
  19. 19.
    Statista GmbH, Global biofuel production from 2000 to 2011 (2013), can be found under http://www.statista.com/statistics/198866/global-biofuel-production–production-in-oil-equivalent-since-2000/

References to Section 6.2

  1. 20.
    F. Asinger, MethanolChemie- und Energierohstoff. Die Mobilisation der Kohle, 1. Aufl. (Springer, Heidelberg, 1986)Google Scholar
  2. 21.
    H.J. Arpe, Industrielle Organische Chemie: Bedeutende Vor- und Zwischenprodukte, 6. Aufl. (Wiley-VCH, Weinheim, 2007)Google Scholar
  3. 22.
    D. Steinborn, Grundlagen der metallorganischen Komplexkatalyse, 2. Aufl. (Vieweg + Teubner, Wiesbaden, 2009)Google Scholar
  4. 23.
    N. Rizkalla (Halcon International), DE 2610036, 1976Google Scholar
  5. 24.
    R.V. Porcelli, V.S. Bhise (Halcon International), DE 3024353, 1981Google Scholar
  6. 25.
    G. Luft, G. Ritter, M. Schrod, Chem. Ing. Tech. 54, 750–760 (1982)Google Scholar
  7. 26.
    C. Hewlett (Halcon International), DE 2441502, 1975Google Scholar
  8. 27.
    C. Elschenbroich, Organometallchemie, 6. Aufl. (Vieweg + Teubner, Wiesbaden, 2008)Google Scholar
  9. 28.
    D.L. King, J.A. Cusumano, R.L. Garten, Cat. Rev. Sci. Eng. 23, 233–263 (1981)Google Scholar
  10. 29.
    S. Rebsdat, D. Mayer, Ethylene glycol. In: Ullmann’sEncyclopedia of Industrial Chemistry, 7th edn. (Wiley-VCH, Weinheim, 2012), pp. 531–546Google Scholar
  11. 30.
    T. Ikarashi, Chem. Econ. Eng. Rev. 12, 31–34 (1980)Google Scholar
  12. 31.
    H.F. Willkie (US Industrial Alcohol Co.), US 1400195, 1921Google Scholar
  13. 32.
    Companie de Béthune, F.P. 673.051, 1929Google Scholar
  14. 33.
    Mitsubishi Gas Chemical Co., Japan. Pat. 15, 3068–766 (1978)Google Scholar
  15. 34.
    Mitsubishi Gas Chemical Co., Japan. Pat. 15, 3108–916 (1978)Google Scholar
  16. 35.
    Mitsubishi Gas Chemical Co., Japan. Pat. 46.821 (1978)Google Scholar
  17. 36.
    Mitsubishi Gas Chemical Co., GB 1546004, 1979Google Scholar
  18. 37.
    A. Aguilo, T. Horlenko, Hydrocarbon Process 142, 120–130 (1980)Google Scholar
  19. 38.
    M. Ioneoka (Mitsubishi Gas Chemical Co.), DE 2716842, 1977Google Scholar
  20. 39.
    S. Jali, H.B. Friedrich, G.R. Julius, J. Mol. Catal. A: Chem. 348, 63–69 (2011)Google Scholar
  21. 40.
    J.S. Lee, J.C. Kim, Y.G. Kim, Appl. Catal. 57, 1–30 (1990)Google Scholar
  22. 41.
    F. Mathé, Y. Castenet, A. Mortreux, F. Petit, Tetrahedron Lett. 32, 3989–3992 (1991)Google Scholar
  23. 42.
    Mitsubishi Gas Chemical Co., Japan. Pat. 30.253 (1973)Google Scholar
  24. 43.
    M. Fontaine, Y. Castanet, A. Mortreux, F. Petit, J. Catal. 167, 324–336 (1997)Google Scholar
  25. 44.
    G. Jenner, Appl. Catal. A: Gen. 121, 25–44 (1995)Google Scholar
  26. 45.
    K. Kondo, N. Sonoda, H. Sakurai, Tetrahedron Lett. 15, 803–804 (1974)Google Scholar
  27. 46.
    P. Pennequin, M. Fontaine, Y. Castanet, A. Mortreux, F. Petit, Appl. Catal. A: Gen. 135, 329–339 (1996)Google Scholar
  28. 47.
    S. Otsuka, A. Nakaruma, T. Yoshida, M. Namto, K. Atato, J. Am. Chem. Soc. 95, 3180–3188 (1973)Google Scholar
  29. 48.
    G. Jemier, E.M. Nahmed, S. Libs-Konrath, J. Mol. Catal. 64, 337–347 (1991)Google Scholar
  30. 49.
  31. 50.
    V.V. Gercev, J.J. Markov-Zemljanski, J. Angew. Chem. (UdSSR) 43, 1633–1635 (1970)Google Scholar
  32. 51.
    Anonymous, Chem. Eng. News 48(28), 24 (1970)Google Scholar
  33. 52.
    A.H. Hanson (A.B. Perstorp), SE 331990, 1971Google Scholar
  34. 53.
    L.J. Kaplan, Chem. Eng. 71–73 (1982)Google Scholar
  35. 54.
    J. Menzel (Uhde GmbH), EP 2010056154, 2010Google Scholar
  36. 55.
    G. Wietzel, K. Eder, A. Scheuermann (BASF AG), DRP 867.849, 1953Google Scholar
  37. 56.
    M. Jahrsdorfer, G. Schwerte (BASF AG), DE 7414, 1941Google Scholar
  38. 57.
    K. Pieroh (BASF AG), DRP Anm. J. 69072 (1941)Google Scholar
  39. 58.
    M. Müller, U. Hübsch, Dimethyl ether, in Ullmann’sEncyclopedia of Industrial Chemistry, vol. 11, 7th edn. (Wiley-VCH, Weinheim, 2011), pp. 305–308Google Scholar
  40. 59.
    G. Reuss, W. Disteldorf, A. O. Gamer, A. Hilt, Formaldehyde. In: Ullmann’sEncyclopedia of Industrial Chemistry, 7th edn., 2012, Wiley-VCH, Weinheim, p. 735–768Google Scholar
  41. 60.
  42. 61.
    E. Jones, G.G. Fowlie, J. Appl. Chem. 3, 206–213 (1953)Google Scholar
  43. 62.
    V.N. Gavrilin, B.I. Popov, Kinet. Catal. (Engl. Transl.) 6, 799-803 (1965)Google Scholar
  44. 63.
    H. Schubert, U. Tegtmeyer, R. Schlögl, Catal. Lett. 28, 383–395 (1994)Google Scholar
  45. 64.
    H. Schubert, U. Tegtmeyer, D. Herein, X. Bao, Muhler M, R. Schlögl, Catal. Lett. 33, 305–319 (1995)Google Scholar
  46. 65.
    G.J. Millar, J.B. Metson, G.A. Bowmaker, R.P. Cooney, J. Chem. Soc., Faraday Trans. 91, 4149–4159 (1995)Google Scholar
  47. 66.
    H. Sperber, Titel. Chem. Ing. Tech. 41, 962–966 (1969)Google Scholar
  48. 67.
    H.B. Uhl, I.H. Cooper, Heyden Chem. Corp., US 2465498, 1949Google Scholar
  49. 68.
    G. Halbritter et al. (BASF AG), DE 2442231, 1978Google Scholar
  50. 69.
    A. Aicher, G. Lehmann, N. Petri, W. Pitteroff, G. Reuss, H. Schreiber, R. Sebastian (BASF AG), EP 0150436 (1985)Google Scholar
  51. 70.
    A. Aicher, H. Haas, H. Sperber, H. Diem, G. Matthias, G. Lehmann (BASF AG), DE 2322757 (1974)Google Scholar
  52. 71.
    A. Aicher, H. Haas, H. Diem, C. Dudeck, F. Brunnmüller, G. Lehmann (BASF AG), DE 2655321 (1978)Google Scholar
  53. 72.
    H. Diem, A. Aicher, H. Haas, C. Dudeck, F. Finkbeiner (BASF AG), DE 2444586 (1976)Google Scholar
  54. 73.
    Anonymous, Chem. Week, 105, 79 (1969)Google Scholar
  55. 74.
    D.G. Sleemann, Chem. Eng. N.Y., 75, 42–44 (1968)Google Scholar
  56. 75.
    M. Weimann, Chem. Eng. N.Y., 77, 102–104 (1970)Google Scholar
  57. 76.
    A. Chauvel, P. Courty, R. Maux, C. Petitpas, Hydrocarbon Process 135, 179–184 (1973)Google Scholar
  58. 77.
    J.H. Marten, M.T. Butler, Oil Gas J. 72, 71–72 (1974)Google Scholar
  59. 78.
  60. 79.
    W.A. Payne (Du Pont), US 2519788, 1950Google Scholar
  61. 80.
    E.S. Northeimer (Du Pont), US 3959383, 1976Google Scholar
  62. 81.
    G.L. Kiser, B.G. Hendricks (Du Pont), US 4 076 754, 1978Google Scholar
  63. 82.
    W.B. Meath (Allied Chemical and Dye Corp.), US 2462413, 1949Google Scholar
  64. 83.
    G.C. Bailey, A.E. Craver (Barrett Comp.), US 1383059, 1921Google Scholar
  65. 84.
    V.E. Meharg, H. Adkins (Bakelite Corp.), US 1913405, 1933Google Scholar
  66. 85.
    F. Traina (Montecatini), US 3198753, 1965Google Scholar
  67. 86.
    S.A. Bergstrand(Perstorp AB), GB 1 080 508, 1967Google Scholar
  68. 87.
    G.D. Kolovertnov, G.K. Boreskov, V.A. Dzisko, B.I. Popov,. D.V. Tarasova, G.C. Belugina, Kinet. Catal./Engl. (Transl.), 6, 950–954 (1965)Google Scholar
  69. 88.
    G.D. Kolovertnov, G.K. Boreskov, L.M. Kefeli, L.M. Plyasova, L.G. Karakchiev, V.N. Mastikin, V.I. Popov, V.A. Dzisko, V.D. Tarasova, Kinet. Catal./Engl. (Transl.), 7, 125–130 (1966)Google Scholar
  70. 89.
    T.S. Hodgins, F.J. Shelton (Reichhold Chemicals), US 2 973 326, 1961Google Scholar
  71. 90.
    J.J. Hukki, E.J. Honkanen (Laeaeketehdas Orion Oy), CH 392484, 1961Google Scholar
  72. 91.
    P. Jiru, B. Wichter1ova, J. Tichy, in Proceedings of 3rd International Congress Catalysis, Amsterdam, vol. 1, 1965, pp. 199–213Google Scholar
  73. 92.
    M. Dente, R. Poppi, I. Pasquon, Chim. Ind. (Milan) 46, 1326–1336 (1964)Google Scholar
  74. 93.
    M. Dente, I. Pasquon, Chim. Ind. (Milan) 47, 359–367 (1965)Google Scholar
  75. 94.
    M. Dente, A. Collina, Chim. Ind. (Milan) 47, 821–829 (1965)Google Scholar
  76. 95.
    W.F. Brondyke, J.A. Monier (Du Pont), US 2 436 287, 1948Google Scholar
  77. 96.
    W.F. Brondyke, J.A. Monier (Du Pont) GB 589 292, 1947Google Scholar
  78. 97.
    Anonymus, Chem. Eng. N.Y. 61, 109–110 (1954)Google Scholar
  79. 98.
    Anonymus, Chem. Process Eng. (London) 51, 100–111 (1970)Google Scholar
  80. 99.
    C.M. Sze (Lummus Comp.), US 3 277 179, 1966Google Scholar
  81. 100.
    A.W. Gessner (Lummus Comp.), US 3408309, 1968Google Scholar
  82. 101.
    G. Greco, U. Soldano, Chem. Ing. Tech. 31, 761–765 (1959)Google Scholar
  83. 102.
    W. Exner, Chem. Anlagen + Verfahren, pp. 87–92 (1973)Google Scholar
  84. 103.
    G. Sextro, Polyoxymethylenes, in Ullmann’sEncyclopedia of Industrial Chemistry, vol. 29, 7th edn. (Wiley-VCH, Weinheim, 2011), pp. 367–379Google Scholar
  85. 104.
    M. Heym, Angew. Makromol. Chem. 244, 67–92 (1997)Google Scholar
  86. 105.
    H. Staudinger, M. Lüthy, Helv. Chim. Acta 8, 41–64 (1925)Google Scholar
  87. 106.
    H. Staudinger, H. Johner, R. Signer, G. Mie, J. Hengstenberg, Z. Phys. Chem. 126, 425–448 (1927)Google Scholar
  88. 107.
    H. Staudinger, R. Signer, H. Johner, M. Lüthy, W. Kern, D. Rusidis, O. Schweitzer, Liebigs Ann. Chem. 474, 145–275 (1929)Google Scholar
  89. 108.
    H. Staudinger, R. Sieger, Z. Kristallogr, Mineralog. Petrogr. A 70, 193 (1929)Google Scholar
  90. 109.
    (Du Pont), FP 1082519, 1954Google Scholar
  91. 110.
    M.F. Bechtold, K. Square, R.N. Macdonald (Du Pont), BE 558693, 1957Google Scholar
  92. 111.
    R.N. Macdonald (Du Pont), DE 1037705, 1958Google Scholar
  93. 112.
    D.L. Funck, (Du Pont), DE 1057086, 1959Google Scholar
  94. 113.
    D.L. Funck, (Du Pont), DE 1090191, 1960Google Scholar
  95. 114.
    R.N. Macdonald, (DuPont), DE 1037705, 1958Google Scholar
  96. 115.
    W. Kern, H. Cherdron, V. Jaacks, Angew. Chem. 73, 177–186 (1961)Google Scholar
  97. 116.
    S. Nogare, J.O. Punderson, S.H.J. Jun, F.C. Starr, W. Jun, G.S. Stamatoff, (Du Pont), DE 1223551, 1966Google Scholar
  98. 117.
    H. Amann, E. Baeder, (Degussa), DE 2003270, 1971Google Scholar
  99. 118.
    J. Hagimory, E. Kitajima, (Tsukamoto Sogyo Co. Ltd.), DE 1964527, 1970Google Scholar
  100. 119.
    W. Thomson, F. Brown, B.K. William, J. Polly, W. George, (Celanese Corp.), DE 1420283, 1969Google Scholar
  101. 120.
    W. Kern, V. Jaacks, (Degussa), DE 1194145, 1965Google Scholar
  102. 121.
    V. Jaaks, W. Kern, Makromol. Chem. 83, 71–79 (1965)Google Scholar
  103. 122.
    M.A. Pacheco, C.L. Marshall, Energ. Fuels 11, 2–29 (1997)Google Scholar
  104. 123.
    D. Delledonne, F. Rivetti, U. Romano, Appl. Catal. A: Gen. 221, 241–251 (2001)Google Scholar
  105. 124.
    F. Rivetti, C.R. Acad. Sci. Paris, SerieIIc, Chem. 3, 497–503 (2000)Google Scholar
  106. 125.
    N. Keller, G. Rebmann, V. Keller, J. Mol. Catal. A: Chem. 317, 1–18 (2010)Google Scholar
  107. 126.
    H. Babab, A.G. Zeiler, Chem. Rev. 73, 75–91 (1973)Google Scholar
  108. 127.
    M. Matzner, R.P. Kurkjy, R.J. Cotter, Chem. Rev. 64, 645–656 (1964)Google Scholar
  109. 128.
    A. Shaikh, S. Sivaran, Chem. Rev. 96, 951–976 (1996)Google Scholar
  110. 129.
    J. Knifton, (Texaco Inc.), US 4661609, 1987Google Scholar
  111. 130.
    L. Cassar, Chim. Ind. Milan 72, 18–22 (1990)Google Scholar
  112. 131.
    U. Romano, R. Tesel, G. Cipriani, L. Micucci, (Anic S.p.a), US 4218391, 1980Google Scholar
  113. 132.
    U. Romano, F. Rivetti, (EnichemSintesi), EP 365083, 1988Google Scholar
  114. 133.
    H.-J. Buysch, Carbonic esters, in Ullmann’sEncyclopedia of Industrial Chemistry, vol. 7, 7th edn. (Wiley-VCH, Weinheim, 2011), pp. 45–71Google Scholar
  115. 134.
    F. Matsuda, K. Narita, H. Oikawa, Y. Okuda, T. Saito, Y. Takahashi, K. Ueno, K. Watanabe (Nippon Steel Corp.), EP 685453, 1995Google Scholar
  116. 135.
    M. Bertau, C. Pätzold, U. Singliar (TU Bergakademie Freiberg), DE 102007051072, 2007Google Scholar
  117. 136.
    K. Nagai, T. Ui, Sumitomo Kagaku (2), 1–12 (2004) (English translation)Google Scholar
  118. 137.
    Evonik Industries AG, Press release from 23.10.2009 (2009)Google Scholar
  119. 138.
    J. Burkhardt, in Symposium am 28 on Silicone Chemie und Technologie, April 1989 (Vulkan, Essen, 1989), pp. 23–27Google Scholar
  120. 139.
    H.-H. Moretto, M. Schulze, G. Wagner, Silicones, in Ullmann’s Encyclopedia of Industrial Chemistry, vol. 32, 7th edn. (Wiley-VCH, Weinheim, 2011), pp. 675–679Google Scholar
  121. 140.
    W. Kalchauer, B. Pachaly, Müller-Rochow synthesis: the direct process to methylchlorosilanes, in Ullmann’sEncyclopedia of Industrial Chemistry, vol. 32, 7th edn. (Wiley-VCH, Weinheim, 2011), pp. 2635–2641Google Scholar
  122. 141.
    H. Brauer, Handbuch des Umweltschutzes und der Umwelttechnik, vol. 2, Produktions- und produktintegrierter Umweltschutz, 1. Aufl. (Springer, Heidelberg, 1996), pp. 467–468Google Scholar
  123. 142.
    H. Gysin, E. Knuesli, (Geigy AG), CH 337019, 1959Google Scholar
  124. 143.
    W. Draber, K. Dichore, Naturwissenschaften 55, 446 (1968)Google Scholar
  125. 144.
    K. Westphal, W. Meiser, L. Fue, H. Hack, (Bayer AG), US 3671523, 1972Google Scholar
  126. 145.
    R. Schmidt, L. Eue, C. Metzger, K. Dickore, (Bayer AG), DE-OS 2407144, 1975Google Scholar
  127. 146.
    Degussa AG, Press release from 12.03.2003 (2003)Google Scholar
  128. 147.
    R. Dittmeyer, W. Keim, G. Kreysa, A. Oberholz (eds.) Winnacker-Küchler: Chemische Technik, vol. 5, 5th edn. (Wiley-VCH, Weinheim, 2006), p. 250Google Scholar
  129. 148.
    M. Fielding (Du Pont), US 3255075, 1966Google Scholar
  130. 149.
    K.-M. Roy, Thiols and organic sulfides, in Ullmann’sEncyclopedia of Industrial Chemistry, vol. 36, 7th edn. (Wiley-VCH, Weinheim, 2011), pp. 629–655Google Scholar
  131. 150.
    H.O. Folkins, E.L. Miller, Ind. Eng. Chem. Proc. Des. Dev. 1, 271–276 (1962)Google Scholar
  132. 151.
    B.J. Aungst, N.J. Rogers, Int. J. Pharm. 53, 227–235 (1989)Google Scholar
  133. 152.
    W. Qia, D. Dinga, R.J. Salvi, Hearing Res. 236, 52–60 (2008)Google Scholar
  134. 153.
    G. Da Violante, N. Zerrouk, I. Richard, G. Provot, J.C. Chaumeil, P. Arnaud, Biol. Pharm. Bull. 25, 1600–1603 (2002)Google Scholar
  135. 154.
    S.L. Moskowitz, Methanol, in Kirk-Othmer Concise Encyclopedia of Chemical Technology, vol. 2, 5th edn. (Wiley, New York, 2007), pp. 1006–1009Google Scholar
  136. 155.
    M. Liauw, T. Prinz, H.-M. Weber, A. Reitzmann, Aromatische Zwischenprodukte, in Winnacker-Küchler, Chemische Technik, eds. by R. Dittmeyer, W. Keim, G. Kreysa, A. Oberholz, vol. 5, 5th edn. (Wiley-VCH, Weinheim, 2005), pp. 374–375Google Scholar
  137. 156.
    T. Ren, M.K. Patel, K. Blok, Energy 33, 817–833 (2008)Google Scholar
  138. 157.
    Directive 2003/30/EG of the European Parliament and Council from 8 May 2003 for the promotion of biofuels or other renewable fuels in traffic (2003)Google Scholar
  139. 158.
    P. Fairly, Taking pulp to the pump, download from: http://www.technologyreview.com/news/411363/taking-pulp-to-the-pump/?a=f, 2008
  140. 159.
    F. Pontzen, W. Liebner, V. Gronemann, M. Rothaemel, B. Ahlers, Catal. Today 171, 242–250 (2011)Google Scholar
  141. 160.
    B. Ahlers, G. Birke, H. Kömpel, H. Bach, M. Rothaemel, W. Liebner, W. Boll, V. Gronemann, (Lurgi AG) WO2010/060566 A1, 2010Google Scholar
  142. 161.
    G. Pagani, (SnamProgetti), DE 2362944, 1974Google Scholar
  143. 162.
    GESTIS Data Base, NatriummethanolatGoogle Scholar
  144. 163.
    F.A. Carey, R.J. Sundberg, Organic Chemistry, 1. Aufl. (Wiley-VCH, Weinheim, 1995)Google Scholar
  145. 164.
    N. Wiberg, E. Wiberg, Lehrbuch der Anorganischen Chemie, 102. Aufl. (de Gruyter, Berlin, 2007)Google Scholar
  146. 165.
    P. Lamers, Market study biodiesel, Fuels of the Future, Berlin, 23.-24.01.2012 (2012)Google Scholar
  147. 166.
    S.W. Tse, US 1697 H 19971104Google Scholar
  148. 167.
    W. Shunkwok, US H001697, 1997Google Scholar
  149. 168.
    C.H. Hamann, P. Schmittinger, (Huels Chemische Werke AG), EP 0810193, 1997Google Scholar
  150. 169.
    H.-J. Sterzel, D. Schläfer, J. Guth, H. Friedrich, P. Zehner, (BASF AG), EP 1195369, 2002Google Scholar
  151. 170.
    A. Qwczarek (Inst. Tech. Elektronowej), PL 211292, 1979Google Scholar
  152. 171.
    R. Auschner, P. Schmittinger, S. Rudolf, (Dynamit Nobel AG), EP 0177768, 1986Google Scholar
  153. 172.
    J. Ruwwe, K.-M. Krüger, U. Knippenberg, V. Brehme, M. Neumann, (Evonik Degussa GmbH), EP 1997794, 2008Google Scholar

References to Section 6.3

  1. 173.
    K. Weidmann, Alternative Kraftstoffe für Dieselmotoren, Essen, 1985Google Scholar
  2. 174.
    H. Menrad, Wenpo Lee, W. Bernhardt, SAE-770790, 1977Google Scholar
  3. 175.
    B. Nierhauve, G. Seidel, H. Menrad, BMFT-Study Voraussetzung für die Einführung von Alkoholkraftstoffen (TÜV Rheinland, Köln, 1983)Google Scholar
  4. 176.
    H. Menrad, B. Nierhauve, SAE-831686, 1983Google Scholar
  5. 177.
    K. Weidmann, H.Menrad, SAE-841331, 1984Google Scholar
  6. 178.
    K. Weidmann, H. Menrad, MTZ 46, 373 (1985)Google Scholar
  7. 179.
    G. Decker, Personal communication (2012)Google Scholar
  8. 180.
    P. Kuirun, Z. Hua, Y. Yun et al., in IX International symposium on alcohol fuels, Firenze, 1991, p. 768Google Scholar
  9. 181.
    U. Hilger, G. Jain, F. Pischinger et al., in IX International symposium on alcohol fuels, Firenze, 1991, p. 479Google Scholar
  10. 182.
    K. Hikino, T. Suzuki, S. Uematsu, in IX International symposium on alcohol fuels, Firenze, 1991, p. 485Google Scholar
  11. 183.
    G. Decker, H. Heinrich, U. Kammann, in IX International symposium on alcohol fuels, Firenze, 1991, p. 501Google Scholar
  12. 184.
    F. Pischinger, E. Scheid, U. Hilger, G. Schmitz (FEV Motorentechnik GmbH & Co. KG), DE 3843243 C2, 1988Google Scholar
  13. 185.
    L. Brabetz, M. Siedentop, G. Schmitz, in IX International symposium on alcohol fuels, Firenze, 1991, p. 552Google Scholar
  14. 186.
    Siemens Automotive Company, Flexible Fuel Sensing Technology (2006)Google Scholar
  15. 187.
    J. van der Weide, H.J. Dekker, A. de Voogd, in IX International symposium on alcohol fuels, Firenze, 1991, p. 509Google Scholar
  16. 188.
    K. Kollmann, J. Abthoff, D. Hüttebräucker, IX International symposium on alcohol fuels, Firenze, p. 518Google Scholar
  17. 189.
    Y-G. Shin, S.–S. Hwang, H-S. Lee, in IX International symposium on alcohol fuels, Firenze, 1991, p. 526Google Scholar
  18. 190.
    T. Suga, S. Kitajima, Y. Hamazaki, in IX International symposium on alcohol fuels, Firenze, 1991, p. 532Google Scholar
  19. 191.
    H. Nohira, S. Kudo, Y Tsukasaki et al., in IX International symposium on alcohol fuels, Firenze, 1991, p. 538Google Scholar
  20. 192.
    M. Namba, T. Yokohama, K. Iida et al., in IX International symposium on alcohol fuels, Firenze, 1991, p. 546Google Scholar
  21. 193.
    Research and Markets, Impact of Alternative Fuels: Fuel Lines, Seals and Injectors, Dublin (2011)Google Scholar
  22. 194.
    H. Menrad, M. Haselhorst, W. Erwig SAE-821210, 1982Google Scholar
  23. 195.
    P. Dedl, P.Hofmann, B. Geringer et al., 13th Symposium on the working process of the internal combustion engine, Graz, 2011Google Scholar
  24. 196.
    F. Pischinger, P. Burghardt, Cornelis Havenith, SAE-830552, 1983Google Scholar
  25. 197.
    F. Pischinger, U. Hilger, G. Jain et al. Wiener, Konzept eines 1,9 l DI-Methanolmotors für den Einsatz im Pkw, 11. Int. Wiener Motorensympos., Düsseldorf, 1990Google Scholar
  26. 198.
    U. Hilger, G. Jain, E. Scheid, SAE-901521, 1990Google Scholar
  27. 199.
    H. Nakamura, M. Oshima, M. Kido, in IX international symposium on alcohol fuels, Firenze 1991, p. 623Google Scholar
  28. 200.
    L.-J. Wang, R.-Z. Song, H.-B. Zhou et al., in Proceedings of the Institution of Mechanical Engineering Part D 222, 2008, p. 619Google Scholar
  29. 201.
    D.H. Qi, S.Q. Liu, J.C. Liu, C.H. Zhang, in Proceedings of the Institution of Mechanical Engineering Part D 219, 2005, p. 405Google Scholar
  30. 202.
    Fluid, 40, p. 36 (2007)Google Scholar
  31. 203.
    F. Zhang, S. Shuai, J. Wang, Z. Wang, SAE-2009-01-1182, 2009Google Scholar

References to Section 6.3.1

  1. 204.
    K. D. Miller, 23rd Annual Dewitt Petrochemical Review, Houston (1998)Google Scholar
  2. 205.
    U. Peters et al., in B. Elvers (ed.) Handbook of Fuels (Wiley-VCH, 2008)Google Scholar
  3. 206.
    M. Winterberg, in Ullmann’s Encyclopedia (Wiley-VCH, 2010)Google Scholar
  4. 207.
    CMAI, World Butylenes Analysis (2010)Google Scholar
  5. 208.
    CMAI, World Methanol Analysis (2012)Google Scholar
  6. 209.
    Chem. Systems, Tertiary Amyl Methyl Ether (1994)Google Scholar
  7. 210.
    CEH, Gasoline Octane Improvers/Oxygenates (2009)Google Scholar

References to Section 6.4

  1. 211.
    IZA Structure Commission, Database of Zeolite Structures, can be found under http://www.iza-structure.org/databases/
  2. 212.
    C. Baerlocher, D.H. Olson, L.B. McCusker, Atlas of Zeolite Framework Types (Elsevier, Amsterdam, 2007)Google Scholar
  3. 213.
    A. Dyer, An introduction to zeolite molecular sieves (Wiley, Chichester, New York, 1988)Google Scholar
  4. 214.
    E. Wiberg, N. Wiberg, Lehrbuch der anorganischen Chemie (Walter de Gruyter, Berlin, 1995)Google Scholar
  5. 215.
    C.D. Chang, Catal. Revs 25, 1–118 (1983)Google Scholar
  6. 216.
    D.H. Everett, Pure Appl. Chem. 31, 577–638 (1972)Google Scholar
  7. 217.
    R. Lago, W. Haag, R. Mikovsky, D. Olson, S. Hellring, K. Schmitt, G. Kerr in Murakami (Hg.) 1986New developments in zeolite science Google Scholar
  8. 218.
    T. Mole in Studies in Surface Science and Catalysis, eds. by D.M. Bibby, C.D. Chang, R.F. Howe, S. Yurchak, vol 36 (Elsevier, Amsterdam, 1988)Google Scholar
  9. 219.
    K. Segawa, M. Sakaguchi, Y. Kurusu in Studies in Surface Science and Catalysis, eds. by D.M. Bibby, C.D. Chang, R.F. Howe, S. Yurchak, vol 36 (Elsevier, Amsterdam, 1988)Google Scholar
  10. 220.
    M. Stöcker, Microporous and mesoporous materials, 82 (2005)Google Scholar
  11. 221.
    T. Mokrani, M. Scurrell, Catal. Rev. Sci. Eng. 51, 1–145 (2009)Google Scholar
  12. 222.
    S.R. Blaszkowski, R.A. van Santen, J. Am. Chem. Soc. 119, 5020–5027 (1997)Google Scholar
  13. 223.
    G.F. Froment, W.J.H. Dehertog, A.J. Marchi in Catalysis. A Review of Recent Literature, ed. by J.J. Spivey. The Royal Society of Chemistry (Cambridge, England, 1992)Google Scholar
  14. 224.
    W. Loewenstein, American Mineralogist, pp. 92–96 (1954)Google Scholar
  15. 225.
    D.S. Coombs, A. Alberti, T. Armbruster, G. Artioli, C. Colella, E. Galli, J.D. Grice, F. Liebau, J.A. Mandarino, H. Minato et al., Can. Mineral. 35, 1571–1606 (1997)Google Scholar
  16. 226.
    IZA Structure CommissionGoogle Scholar
  17. 227.
    R.F. Howe in Studies in Surface Science and Catalysis, eds. by D.M. Bibby, C.D. Chang, R.F. Howe, S. Yurchak., vol 36 (Elsevier, Amsterdam, 1988)Google Scholar
  18. 228.
    J.A. Rabo, G.J. Gajda in Guidelines for mastering the properties of molecular sieves. Relationship between the physicochemical properties of zeolitic systems and their low dimensionality (Plenum Press, New York, 1990)Google Scholar
  19. 229.
    J.F. Haw, Phys. Chem. chem. Phys. pp. 5431–5441 (2002)Google Scholar
  20. 230.
    P.L. Benito, A.G. Gayubo, A.T. Aguayo, M. Olazar, J. Bilbao, J. Chem. Tech. Biotechnol. pp. 183–191 (1996)Google Scholar
  21. 231.
    C.D. Chang, Catal. Revs. 26, 323–345 (1984)Google Scholar
  22. 232.
    M. Bjørgen, F. Joensen, M. Spangsberg Holm, U. Olsbye, K.-P. Lillerud, S. Svelle, Appl. Catal. A 345, 43–50 (2008)Google Scholar
  23. 233.
    R.J. Argauer, G.R. Landolt, US 3702886, 1972Google Scholar
  24. 234.
    E.M. Flanigen, R.L. Patton, US 4073865, 1978Google Scholar
  25. 235.
    J.F. Haw, W. Song, D.M. Marcus, J.B. Nicholas, ChemInform 34 (2003)Google Scholar
  26. 236.
    Z.-M. Cui, Q. Liu, W.-G. Song, L.-J. Wan, Angew. Chem. Int. Ed 45, 6512–6515 (2006)Google Scholar
  27. 237.
    C. Baerlocher, W.M. Meier, D. Olson, Atlas of zeolite framework types (Elsevier, Amsterdam, New York, 2001)Google Scholar
  28. 238.
    J.F. Haw, D.M. Marcus, Top. Catal. 34, 41–48 (2005)Google Scholar
  29. 239.
    Honeywell International Inc., Honeywell UOP’s Advanced Methanol-to-Olefins Technology Selected In China To Produce Chemical Products (2011), can be found under http://honeywell.com/News/Pages/Honeywell-UOP%E2%80%99s-Advanced-Methanol-To-Olefins-Technology-Selected-In-China-To-Produce-Chemical-Products.aspx
  30. 240.
    S. Bordiga, L. Regli, D. Cocina, C. Lamberti, M. Bjørgen, K.P. Lillerud, J. Phys. Chem. B 109, 2779–2784 (2005)Google Scholar
  31. 241.
    J. Sefcik, E. Demiralp, T. Cagin, W.A. Goddard, III, Rational Design of Zeolites for catalysis and separation (1998)Google Scholar
  32. 242.
    G. Burgfels, S. Klingelhöfer, L. H. Ong, R. Olindo, J. Lercher, F. Schmidt, DE 102010005704, 2011Google Scholar
  33. 243.
    Y.-f. Chang, S.N. Vaughn, L.R.M. Martens, J.E. Baumgartner, S.L. Soled, K.R. Clem, US 2005/0137080, 2005Google Scholar
  34. 244.
    R. von Ballmoos, W.M. Meier, Nature 289, 782–783 (1981)Google Scholar
  35. 245.
    A. Tissler, P. Polanek, U. Girrbach, U. Müller, K. Unger, pp. 399–408Google Scholar
  36. 246.
    V.S. Nayak, V.R. Choudhary, Appl. Catal. 10, 137–145 (1984)Google Scholar
  37. 247.
    A. de Lucas, P. Canizares, A. Durán, A. Carrero, Appl. Catal. A 154, 221–240 (1997)Google Scholar
  38. 248.
    G. H. Kühl in Catalysis and zeolites. Fundamentals and applications, eds. by J. Weitkamp, L. Puppe (Springer, New York, 1999)Google Scholar
  39. 249.
    V. Zholobenko, L. Kustov, V. Kazansky, E. Loeffler, U. Lohse, G. Oehlmann, Zeolites 11, 132–134 (1991)Google Scholar
  40. 250.
    C.D. Chang, C.T.W. Chu, J.N. Miale, R.F. Bridger, R.B. Calvert, J. Am. Chem. Soc. 106, 8143–8146 (1984)Google Scholar
  41. 251.
    D.S. Shibabi, W.E. Garwood, P. Chu, J.N. Miale, R.M. Lago, C.T.W. Chu, C.D. Chang, J. Catal. 93, 471–474 (1985)Google Scholar
  42. 252.
    M. Kang, J. Mol. Catal. A: Chem. 160, 437–444 (2000)Google Scholar
  43. 253.
    D.L. Obrzut, P.M. Adekkanattu, J. Thundimadathil, J. Liu, D.R. Dubois, J.A. Guin, React. Kinet. Catal. Lett. 80, 113–121 (2003)Google Scholar
  44. 254.
    M. Salmasi, S. Fatemi, A. Taheri Najafabadi, J. Ind. Eng. Chem. 17, 755–761 (2011)Google Scholar
  45. 255.
    T.L. Marker, C.D. Gosling, US 5817906, 1998Google Scholar
  46. 256.
    M.M. Mertens, M.J. Janssen, L.R.M. Martens, K.R. Clem, US 20060079397, 2006Google Scholar
  47. 257.
    T. Inui, M. Kang, Appl. Catal. A 164, 211–223 (1997)Google Scholar
  48. 258.
    S. Yurchak in Studies in Surface Science and Catalysis, eds. by D.M. Bibby, C.D. Chang, R.F. Howe, S. Yurchak, vol 36 (Elsevier, Amsterdam, 1988)Google Scholar
  49. 259.
    P.L. Benito, A.G. Gayubo, A.T. Aguayo, M. Olazar, J. Bilbao, Ind. Eng. Chem. Res. 3991–3998 (1996)Google Scholar
  50. 260.
    H. Schulz, Catal. Today 154, 183–194 (2010)Google Scholar
  51. 261.
    F.J. Keil, Microporous Mesoporous Mater. 29, 49–66 (1999)Google Scholar
  52. 262.
    D.E. Krohn, M.G. Melconian in Studies in Surface Science and Catalysis, eds. by D.M. Bibby, C.D. Chang, R.F. Howe, S. Yurchak, vol 36 (Elsevier, Amsterdam, 1988)Google Scholar
  53. 263.
    T.V. Janssens, J. Catal. 264, 130–137 (2009)Google Scholar
  54. 264.
    S. Teketel, U. Olsbye, K.-P. Lillerud, P. Beato, S. Svelle, Microporous Mesoporous Mater. 136, 33–41 (2010)Google Scholar
  55. 265.
    U. Olsbye, M. Bjørgen, S. Svelle, K.-P. Lillerud, S. Kolboe, Catal. Today 106, 108–111 (2005)Google Scholar
  56. 266.
    M. Guisnet, J. Mol. Catal. A: Chem. 182–183, 367–382 (2002)Google Scholar
  57. 267.
    M. Guisnet, P. Magnoux, Appl. Catal. 54, 1–27 (1989)Google Scholar
  58. 268.
    M. Guisnet, P. Magnoux, Appl. Catal. A 212, 83–96 (2001)Google Scholar
  59. 269.
    S. Kolboe in Studies in Surface Science and Catalysis, eds. by D.M. Bibby, C.D. Chang, R.F. Howe, S. Yurchak, vol 36 (Elsevier, Amsterdam, 1988)Google Scholar
  60. 270.
    B.E. Langner, Appl. Catal. 2, 289–302 (1982)Google Scholar
  61. 271.
    A.G. Gayubo, J.M. Ortega, A.T. Aguayo, J.M. Arandes, J. Bilbao, Chem. Eng. Sci. 55, 3223–3235 (2000)Google Scholar
  62. 272.
    J. Li, Y. Tan, Q. Zhang, Y. Han, Fuel 89, 3510–3516 (2010)Google Scholar
  63. 273.
    A.T. Aguayo, D. Mier, A.G. Gayubo, M. Gamero, J. Bilbao, Ind. Eng. Chem. Res. 49, 12371–12378 (2010)Google Scholar
  64. 274.
    Topp-Jørgensen in Studies in Surface Science and Catalysis, eds. by D.M. Bibby, C.D. Chang, R.F. Howe, S. Yurchak, vol 36 (Elsevier, Amsterdam, 1988)Google Scholar
  65. 275.
    K.G. Allum, A.R. Williams in Studies in Surface Science and Catalysis, eds. by D.M. Bibby, C.D. Chang, R.F. Howe, S. Yurchak, vol 36 (Elsevier, Amsterdam, 1988)Google Scholar
  66. 276.
    I.I. Ivanova, Y.G. Kolyagin, Chem. Soc. Rev. 5018–5050 (2010)Google Scholar
  67. 277.
    C.D. Chang in Studies in Surface Science and Catalysis, eds. by D.M. Bibby, C.D. Chang, R.F. Howe, S. Yurchak, vol 36 (Elsevier, Amsterdam, 1988)Google Scholar
  68. 278.
    A.C. Gujar, V.K. Guda, M. Nolan, Q. Yan, H. Toghiani, M.G. White, Appl. Catal. A 363, 115–121 (2009)Google Scholar
  69. 279.
    M. Stöcker, Microporous Mesoporous Mater. 29, 3–48 (1999)Google Scholar
  70. 280.
    I.M. Dahl, S. Kolboe, Catal. Lett. 329–336 (1993)Google Scholar
  71. 281.
    I.M. Dahl, S. Kolboe, J. Catal. 458–464 (1994)Google Scholar
  72. 282.
    I.M. Dahl, S.Kolboe, J. Catal. 304–309 (1996)Google Scholar
  73. 283.
    T. Mole, G. Bett, D. Seddon, J. Catal. 435–445 (1983)Google Scholar
  74. 284.
    T. Mole, J.A. Whiteside, D. Seddon, J. Catal. 261–266 (1983)Google Scholar
  75. 285.
    W. Song, D.M. Marcus, H. Fu, J.O. Ehresmann, J.F. Haw, J. Am. Chem. Soc. 124, 3844–3845 (2002)Google Scholar
  76. 286.
    M. Bjørgen, J. Catal. 221, 1–10 (2004)Google Scholar
  77. 287.
    E.J. Munson, A.A. Kheir, N.D. Lazo, J.F. Haw, J. Phys. Chem. 7740–7746 (1996)Google Scholar
  78. 288.
    H. Adkins, P.D. Perkins, J. Phys. Chem. 32, 221–224 (1928)Google Scholar
  79. 289.
    J.M. Parera, Ind. Eng. Chem. Prod. Res. Dev 15, 234–241 (1976)Google Scholar
  80. 290.
    R. Abraham in DGMK Conference Future Feedstocks for Fuels and Chemicals, Berlin, Germany. Supplement to conference preprints, DGMK, Hamburg, Sept 29–Oct 1, 2008Google Scholar
  81. 291.
    G. Burgfels, K. Kochloefl, J. Ladebeck, F. Schmidt, M. Schneider, H.J. Wernicke, DE 3838710, 1990Google Scholar
  82. 292.
    Y. Wei, J. Li, S. Xu, S. Yuan, L. Xu, J. Chen, Y. Zhou, Y. Qi, Z. Liu, Complete prospect and carbon atom economy evaluation of methanol-to-olefins reaction. Abstract ICC 2012, can be found under http://events.dechema.de/events/en/Events/Materials+for+Energy+_+EnMat+II/Congress+Planer/Datei_Handler-tagung-564-file-7857-p-127866.htm
  83. 293.
    B.M. Lok, C.A. Messina, R.L. Patton, R.T. Gajek, T.R. Cannan, E.M. Flanigen, US 4440871, 1984Google Scholar
  84. 294.
    T.N. Kalnes, T.V. Voskoboynikov, US 7414167, 2008Google Scholar
  85. 295.
    E. Köhler, F. Schmidt, H.J. Wernicke, M. de Pontes, H.L. Roberts, Hydrocarbon technology international 37–40 (1995)Google Scholar
  86. 296.
    C. Knottenbelt, Catal. Today 71, 437–445 (2002)Google Scholar
  87. 297.
    D.W. Leyshon, G.E. Cozzone, US 5043522, 1991Google Scholar
  88. 298.
    D.L. Johnson, K.E. Nariman, R.A. Ware, US 6222087, 2001Google Scholar

References to Section 6.4.1

  1. 299.
    R.J. Argauer, G.R. Landolt, US 3702886, 1972Google Scholar
  2. 300.
    C.D. Chang, A.J. Silvestri, J. Catal. 249–259 (1977)Google Scholar
  3. 301.
    C.D. Chang, A.J. Silvestri, ChemTech 17, 624–631 (1987)Google Scholar
  4. 302.
    C.D. Chang, Catal. Revs. 25, 1–118 (1983)Google Scholar
  5. 303.
    M. Stöcker, Microporous and Mesoporous Mater. 82 (2005)Google Scholar
  6. 304.
    C.J. Maiden in Studies in Surface Science and Catalysis, eds. by D.M. Bibby, C.D. Chang, R.F. Howe, S. Yurchak, vol 36 (Elsevier, Amsterdam, 1988)Google Scholar
  7. 305.
    K.G. Allum, A.R. Williams in Studies in Surface Science and Catalysis, eds. by D.M. Bibby, C.D. Chang, R.F. Howe, S. Yurchak, vol 36 (Elsevier, Amsterdam, 1988)Google Scholar
  8. 306.
    G.A. Mills, Fuel 73, 1243–1279 (1994)Google Scholar
  9. 307.
    H.R. Grimmer, N. Thiagarajan, E. Nitschke in Studies in Surface Science and Catalysis, eds. by D.M. Bibby, C.D. Chang, R.F. Howe, S. Yurchak, vol 36 (Elsevier, Amsterdam, 1988)Google Scholar
  10. 308.
    T. Mokrani, M. Scurrell, Catal. Rev. Sci. Eng. 51, 1–145 (2009)Google Scholar
  11. 309.
    Structure Commission of the International Zeolite Association (2008), can be found under http://izasc.ethz.ch/fmi/xsl/IZA-SC/ftc_fw.xsl?-db=Atlas_main&-lay=fw&-max=25&STC=MFI&-find
  12. 310.
    M. Stöcker, Microporous Mesoporous Mater. 29, 3–48 (1999)Google Scholar
  13. 311.
    T. Mole in Studies in Surface Science and Catalysis, eds. by D.M. Bibby, C.D. Chang, R.F. Howe, S. Yurchak, vol 36 (Elsevier, Amsterdam, 1988)Google Scholar
  14. 312.
    G.F. Froment, W.J.H. Dehertog, A.J. Marchi in Catalysis. A review of recent literature, ed. by J.J. Spivey. The Royal Society of Chemistry (Cambridge, England, 1992)Google Scholar
  15. 313.
    J.F. Haw, W. Song, D.M. Marcus, J.B. Nicholas, ChemInform 34 (2003)Google Scholar
  16. 314.
    C.D. Chang in Studies in Surface Science and Catalysis, eds. by D.M. Bibby, C.D. Chang, R.F. Howe, S. Yurchak, vol 36 (Elsevier, Amsterdam, 1988)Google Scholar
  17. 315.
    F.J. Keil, Microporous Mesoporous Mater. 29, 49–66 (1999)Google Scholar
  18. 316.
    I.I. Ivanova, Y.G. Kolyagin, Chem. Soc. Rev. 5018–5050 (2010)Google Scholar
  19. 317.
    S. Yurchak in Studies in Surface Science and Catalysis, eds. by D.M. Bibby, C.D. Chang, R.F. Howe, S. Yurchak, vol 36 (Elsevier, Amsterdam, 1988)Google Scholar
  20. 318.
    A.C. Gujar, V.K. Guda, M. Nolan, Q. Yan, H. Toghiani, M.G. White, Appl. Catal. A 363, 115–121 (2009)Google Scholar
  21. 319.
    H. Schulz, Catal. Today 154, 183–194 (2010)Google Scholar
  22. 320.
    M. Guisnet, J. Mol. Catal. A: Chem. 182–183, 367–382 (2002)Google Scholar
  23. 321.
    M. Guisnet, P. Magnoux, Appl. Catal. 54, 1–27 (1989)Google Scholar
  24. 322.
    M. Guisnet, P. Magnoux, Appl. Catal. A 212, 83–96 (2001)Google Scholar
  25. 323.
    A.G. Gayubo, J.M. Ortega, A.T. Aguayo, J.M. Arandes, J. Bilbao, Chem. Eng. Sci. 55, 3223–3235 (2000)Google Scholar
  26. 324.
    B.E. Langner, Appl. Catal. 2, 289–302 (1982)Google Scholar
  27. 325.
    P.L. Benito, A.G. Gayubo, A.T. Aguayo, M. Olazar, J. Bilbao, Ind. Eng. Chem. Res. 3991–3998 (1996)Google Scholar
  28. 326.
    J. Li, Y. Tan, Q. Zhang, Y. Han, Fuel 89, 3510–3516 (2010)Google Scholar
  29. 327.
    A.T. Aguayo, A.G. Gayubo, J. Ereña, R. Vivanco, J. Bilbao, Chem. Eng. J. 92, 141–150 (2003)Google Scholar
  30. 328.
    T.V. Janssens, J. Catal. 264, 130–137 (2009)Google Scholar
  31. 329.
    R.F. Howe in Studies in Surface Science and Catalysis, eds. by D.M. Bibby, C.D. Chang, R.F. Howe, S. Yurchak, vol 36 (Elsevier, Amsterdam, 1988)Google Scholar
  32. 330.
    A.T. Aguayo, D. Mier, A.G. Gayubo, M. Gamero, J. Bilbao, Ind. Eng. Chem. Res. 49, 12371–12378 (2010)Google Scholar
  33. 331.
    Topp-Jørgensen in Studies in Surface Science and Catalysis, eds. by D.M. Bibby, C.D. Chang, R.F. Howe, S. Yurchak, vol 36 (Elsevier, Amsterdam, 1988)Google Scholar
  34. 332.
    S. Kolboe in Studies in Surface Science and Catalysis, eds. by D.M. Bibby, C.D. Chang, R.F. Howe, S. Yurchak, vol 36 (Elsevier, Amsterdam, 1988)Google Scholar
  35. 333.
    H.-H. Gierlich, W. Dolkemeyer, A. Avidan, N. Thiagarajan, Umwandlung von Methanol zu Benzin nach dem Wirbelbett-Verfahren, InnsbruckGoogle Scholar
  36. 334.
    K.H. Keim, J. Maziuk, A. Toennesmann, Erdöl and Kohle, Erdgas, Petrochemie 37, 558–562 (1984)Google Scholar
  37. 335.
    K.H. Keim, F.J. Krambeck, J. Maziuk, A. Toennesmann, Erdöl, Erdgas, Kohle 103, 82–85 (1987)Google Scholar
  38. 336.
    C.D. Chang, Catal. Revs. 26, 323–345 (1984)Google Scholar
  39. 337.
    H.A. Zaidi, K.K. Pant, Ind. Eng. Chem. Res. 47, 2970–2975 (2008)Google Scholar
  40. 338.
    I. Nexant, PERP Program: Developments in para-Xylene Technology, can be found under http://www.chemsystems.com/about/cs/news/items/PERP%200809S11_paraXylene.cfm
  41. 339.
    J. Scherzer, Octane-enhancing, zeolitic FCC catalysts. Scientific and technical aspects (M. Dekker, New York, 1990)Google Scholar
  42. 340.
    M.L. Occelli, P. O’Connor, Fluid Cracking Catalysts (M. Dekker, New York, 1998)Google Scholar
  43. 341.
    S. Tabak, ExxonMobil Methanol to Gasoline, can be found under http://www.uschinaogf.org/Forum7/7Topic23-SamuelTabak-ExxonMobil-English.pdf
  44. 342.
    J. Packer, The Production of Methanol and Gasoline, can be found under http://nzic.org.nz/ChemProcesses/energy/7D.pdf
  45. 343.
    J. Peckham, JAMG’s Methanol-to-Gasoline Plant Starts-up, can be found under http://www.worldfuels.com/wfExtract/exports/Content/33fead92-fc2d-447d-bc2e-3e95a8ff6e12.html
  46. 344.
    M. Schneider, F. Schmidt, G. Burgfels, H. Buchold, F.-W. Möller, EP 0448000, 1991Google Scholar
  47. 345.
    ExxonMobil, ExxonMobil’s Methanol to Gasoline (MTG) Techno logy Selected for DKRW Advanced Fuels’ Coal to Liquids Project, can be found under http://www.dkrwaf.com/_filelib/FileCabinet/PDFs/Press_Releases/ExxonPressRelease.pdf?FileName=ExxonPressRelease.pdf
  48. 346.
    D.E. Krohn, M.G. Melconian in Studies in Surface Science and Catalysis, eds. by D.M. Bibby, C.D. Chang, R.F. Howe, S. Yurchak, vol 36 (Elsevier, Amsterdam, 1988)Google Scholar
  49. 347.
    M. Bjørgen, F. Joensen, M. Spangsberg Holm, U. Olsbye, K.-P. Lillerud, S. Svelle, Appl. Catal. A 345, 43–50 (2008)Google Scholar
  50. 348.
    Methanex Corporation, Global Environmental Report 2005, can be found under http://www.methanex.com/environment/documents/2005_Environmental_Excellence_Report.pdf
  51. 349.
    S. Yurchak, US 4814536, 1989Google Scholar
  52. 350.
    J.H. Beech, Jr., F.P. Ragonese, US 5059738, 1991Google Scholar
  53. 351.
    W. Lee, S. Yurchak, N. Daviduk, J. Maziuk in Proceedings of the NPRA Annual Meeting, 1980Google Scholar
  54. 352.
    T. Sugiyama, Thesis, Massachusetts Institute of Technology, 1994Google Scholar
  55. 353.
    Green Car Congress, DKRW Selects ExxonMobil’s Methanol-to-Gasoline (MTG) Technology for Coal-to-Liquids Project, can be found under http://www.greencarcongress.com/2007/12/dkrw-selects-ex.html
  56. 354.
  57. 355.
    M. Rothaemel, H.-D. Holtmann, Erdöl Erdgas Kohle 234–237 (2002)Google Scholar
  58. 356.
    G. Burgfels, K. Kochloefl, J. Ladebeck, F. Schmidt, M. Schneider, H.J. Wernicke, DE 3838710, 1990Google Scholar
  59. 357.
    H. Hartmann, Erdöl Erdgas Kohle 123, 362–369 (2007)Google Scholar
  60. 358.
    W. Liebner, M. Wagner, Erdöl Erdgas Kohle 120 (2004)Google Scholar
  61. 359.
  62. 360.
    S.A. Tabak, A.A. Avidan, F.J. Krambeck, Production of synthetic gasoline and diesel fuel from non-petroleum resources, can be found under http://web.anl.gov/PCS/acsfuel/preprint archive/Files/31_2_NEW YORK_04-86_0293.pdf
  63. 361.
    S. Lee, M. Gogate, C.J. Kulik, Fuel Sci. Technol. Int. 13, 1039–1057 (1995)Google Scholar
  64. 362.
    M. Wang, GREET1.5a: Changes from GREET1.5 (2000), can be found under http://www.transportation.anl.gov/pdfs/TA/150.pdf

References to Section 6.4.2

  1. 363.
    Chemical Market Associates Inc. (CMAI), World Light Olefins Analysis (WLOA) (2009). http://www.ihs.com/products/chemical/index.aspx?pu=1&rd=cmai
  2. 364.
    D. Greer, M. Houdek, R. Pittmann, J. Woodcock, Erdöl Erdgas Kohle 118(5), 242 (2002)Google Scholar
  3. 365.
    CMAI, World Light Olefins Analysis, Houston Texas 173–176 (2003)Google Scholar
  4. 366.
    R.J. Argauer, G.R. Landolt, US Patent 3,702,886Google Scholar
  5. 367.
    C.D. Chang, A.J. Silvestri, Catalysis 47, 249–259 (1977)Google Scholar
  6. 368.
    C.D. Chang, A.J. Silvestri, ChemTech 10, 624 (1987)Google Scholar
  7. 369.
    F.J. Keil, Microporous and Mesoporous Mater. 29, 49–66 (1999) (Review Methanol-to-hydrocarbons: process technology)Google Scholar
  8. 370.
    Z.M. Liu, C.L. Sun, G.W. Wang, Q.X. Wang, G.Y. Cai, Fuel Process. Technol. 62, 161–172 (2000)Google Scholar
  9. 371.
    J. Li, Y. Wei, G. Liu, Y. Qi, P. Tian, B. Li, Y. He, Z. Liu, Catal. Today 171, 1 (2011)Google Scholar
  10. 372.
    T. Ren, M. Patel, K. Blok, Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes. Energy 31, 425–451 (2006)Google Scholar
  11. 373.
    T. Mokrani, M. Scurrell, Gas conversion to liquid fuels and chemicals: the methanol route-catalysis and processes development. Catal. Rev. 51, 1–145 (2009)Google Scholar
  12. 374.
    C.D. Chang, in Methanol to Hydrocarbons, eds. by G. Ertl, H. Knözinger, Weitkamp. Handbook of Heterogeneous Catalysis, 1st edn, p. 1894Google Scholar
  13. 375.
    S. Kvisle, T. Fuglerud, S. Kolboe, U. Olsbye, K.P. Lillerud, B. Vora, in Methanol-to-Hydrocarbons. Handbook of Heterogeneous Catalysis, vol 2, p. 707Google Scholar
  14. 376.
    T.J. Gregor Remans, G. Jenzer, A. Hoek, Gas-to-Liquids. Handbook of Heterogeneous Catalysis, pp. 2994–3010 (2008)Google Scholar
  15. 377.
    Michael Stöcker, Methanol-to-hydrocarbons: catalytic materials and their behaviour. Microporous Mesoporous Mater. 29(1–2), 3–48 (1999). doi: 10.1016/S1387-1811(98)00319-9 Google Scholar
  16. 378.
    J. Li, Y. Wei, G. Liu, Y. Qi, P. Tian, B. Li, Y. He, Z. Liu, Catal. Today 171(1), 221–228 (2011)Google Scholar
  17. 379.
    C.D. Chang, Catal. Rev. Sci. Eng. 25, 1(1983)Google Scholar
  18. 380.
    U.S. Pat. No. 3,931,349Google Scholar
  19. 381.
    U.S. Pat. No. 4,404,414Google Scholar
  20. 382.
    D. Chen, H.P. Rebo, K. Moljord, A. Holmen, Methanol Conversion to Light Olefins over SAPO-34. Sorption, Diffusion, and Catalytic Reaction. Ind. Eng. Chem. Res. 38, 4241–4249 (1999)Google Scholar
  21. 383.
    A.G. Gayubo, A.T. Aguayo, M. Castilla, M. Olazar, J. Bilbao, Catalyst reactivation kinetics for methanol transformation into hydrocarbons. Expressions for designing reaction-regeneration cycles in isothermal and adiabatic fixed bed reactor. Chem. Eng. Sci. 56, 5059–5071 (2001)Google Scholar
  22. 384.
    H. Hu, F. Cao, W. Ying, Q. Sun, D. Fang, Study of coke behaviour of catalyst during methanol-to-olefins process based on a special TGA reactor. Chem. Eng. J. 160, 770–778 (2010)Google Scholar
  23. 385.
    A.J. Marchi, G.F. Froment, Catalytic conversion of methanol to light alkenes on SAPO molecular sieves.Appl. Catal. 71, 139–152 (1991)Google Scholar
  24. 386.
    J. Luckner, Effect of process parameters on methanol-to-olefins reactions over SAPO catalysts. PhD Thesis, Auburn University, 2005Google Scholar
  25. 387.
    G. Qi, Z. Xie, W. Yang, S. Zhong, H. Liu, C. Zhang, Q. Chen, behaviours of coke deposition on SAPO-34 catalyst during methanol conversion to light olefins. Fuel ProcessGoogle Scholar
  26. 388.
    L. Travalloni, A.C.L. Gomes, A.B. Gaspar, M.A.P. da Silva, Methanol conversion over acid solid catalysts. Catal. Today 133–135, 406–412 (2008)Google Scholar
  27. 389.
    X. Wu, M.G. Abraha, R.G. Anthony, Methanol conversion on SAPO-34: reaction condition for fixed-bed reactor. Appl. Catal. A: Gen. 260, 63–69 (2004)Google Scholar
  28. 390.
    A. T., Aguayo, D., Mier, A. G., Gayubo, M., Gamero, J. Bilbao, Kinetics of Methanol Transformation into Hydrocarbons on a HZSM-5 Zeolite Catalyst at High Temperature (400-550°C). Ind. Eng. Chem. Res.2010, 49, 12371–12378Google Scholar
  29. 391.
    S.M. Alwahabi, G.F. Froment, Single Event Kinetic Modeling of the Methanol-to-Olefins Process on SAPO-34. Ind. Eng. Chem. Res. 43, 5098–5111 (2004)Google Scholar
  30. 392.
    D. Chen, H.P. Rebo, A. Grønvold, K. Moljord, A. Holmen, Methanol conversion to light olefins over SAPO-34: kinetic modeling of coke formation. Microporous Mesoporous Mater. 35–36, 121–135 (2000)Google Scholar
  31. 393.
    S.M. Al Wahabi, Conversion of methanol to light olefins on SAPO-34: Kinetic modeling and reactor design. PhD Thesis, Texas A&M University, 2003Google Scholar
  32. 394.
    N. Fatourehchi, M. Sohrabi, S.J. Royaee, S.M. Mirarefin, Application of a Fluidized bed reactor in the MTO (Methanol to Olefin) process: preparation of catalyst and presentation of a kinetic model. Petrol. Sci. Technol. 29, 1578–1589 (2011)Google Scholar
  33. 395.
    A.G. Gayubo, A.T. Aguayo, A.E. Sánchez del Campo, A.M. Tarrío, J. Bilbao, Kinetic modeling of methanol transformation into olefins on a SAPO-34, Catalyst. Ind. Eng. Chem. Res. 39, 292–300 (2000)Google Scholar
  34. 396.
    A.T. Najafabadi, S. Fatemi, M. Sohrabi, M. Salmasi, Kinetic modeling and optimization of the operating condition of MTO process on SAPO-34, Catalyst. J. Ind. Eng. Chem. 18, 29–37 (2012)Google Scholar
  35. 397.
    S. Soundararajan, A.K. Dalai, F. Berruti, Modeling of methanol-to-olefins (MTO) process in a circulating fluidized bed reactor. Fuel 80, 1187–1197 (2001)Google Scholar
  36. 398.
    A.T. Aguayo, A.G. Gayubo, R. Vivanco, A. Alonso, J. Bilbao, Initiation step and reactive intermediates in the transformation of methanol into olefinsover SAPO-18. Catal. Ind. Eng. Chem. Res. 44, 7279–7286 (2005)Google Scholar
  37. 399.
    A.T. Aguayo, A.G. Gayubo, R. Vivanco, M. Olazar, J. Bilbao, Role of Acidity and microporous structure in alternative catalysts for the transformation of methanol into olefins. Appl. Catal. A: Gen. 283, 197–207 (2005)Google Scholar
  38. 400.
    A.G. Gayubo, A.T. Aguayo, A. Alonso, J. Bilbao, Kinetic Modeling of the Methanol-to-Olefins Process on a Silicoaluminophosphate (SAPO-18) Catalyst by Considering Deactivation and the Formation of Individual Olefins. Ind. Eng. Chem. Res. 46, 1981–1989 (2007)Google Scholar
  39. 401.
    A.G. Gayubo, A.T. Aguayo, A. Alonso, A. Atutxa, J. Bilbao, Reaction scheme and kinetic modeling for the MTO Process over a SAPO-18. Catal. Catal. Today 106, 112–117 (2005)Google Scholar
  40. 402.
    Y. Kumita, J. Gascon, E. Stavitski, J.A. Moulijn, F. Kapteijn, Shape selective methanol-to-olefins over highly thermostable DDR catalysts. Appl. Catal. A: Gen. 391, 234–243 (2011)Google Scholar
  41. 403.
    J. Li, Y. Wei, G. Liu, Y. Qi, P. Tian, B. Li, Y. He, Z. Liu, Comparative study of MTO conversion over SAPO-34, H-ZSM-5 and H-ZSM-22: Correlating catalytic performance and reaction mechanism to zeolite topology.Catal. Today 171, 221–228 (2011)Google Scholar
  42. 404.
    D. Mores, J. Kornatowski, U. Olsbye, B.M. Weckhuysen, Coke Formation during the Methanol-to-Olefin Conversion: In Situ Microspectroscopy on Individual H-ZSM-5 Crystals with Different Brønsted Acidity. Chem. Eur. J. 17, 2874–2884 (2011)Google Scholar
  43. 405.
    B. Valle, A. Alonso, A. Atutxa, A.G. Gayubo, J. Bilbao, Effect of nickel incorporation on the acidity and stability of HZSM-5 zeolite in the MTO process. Catal. Today 106, 118–122 (2005)Google Scholar
  44. 406.
    E.M. Flanigen, B.M. Lok, R.L. Patton, S.T. Wilson1987 Aluminophosphate molecular sieves and the periodic table, in New Developments in Zeolite Science and Technology, in Proceedings of 7th international Zeolite Conference, Tokyo, eds. by Y. Murakami, A. Ijima, J.W. Ward (Elsevier, Amsterdam, 1986) pp. 103–112Google Scholar
  45. 407.
    S.W. Kaiser, US Patent 4 499 327, 1985Google Scholar
  46. 408.
    S.W. Kaiser, US Patent 4 524 234, 1985Google Scholar
  47. 409.
    S.W. Kaiser, Arab. J. Sci. Eng. 10, 361 (1985)Google Scholar
  48. 410.
    G. Pop, G. Musca, D. Ivanescu, E. Pop, G. Maria, E. Chirila, O. Muntean, Chem. Ind. 46, 443 (1992)Google Scholar
  49. 411.
    U.S. Pat. No. 4,440,871Google Scholar
  50. 412.
    J. Chen, P.A. Wright, S. Natarajan, J.M. Thomas in Studies in Surface Science and Catalysis 84, 1731–1738 (1994)Google Scholar
  51. 413.
    U.S. Pat. No. 5,279,810Google Scholar
  52. 414.
    J. Chen, P.A. Wright, J.M. Thomas, S. Natarajan, L. Marchese, S.M. Bradley, G. Sankar, C.R.A. Catlow, P.L. Gai-Boyes 98, 10216–10224 (1994)Google Scholar
  53. 415.
    J. Chen, J.M. Thomas, P.A. Wright, R.P. Townsend, Catal. Lett. 28, 241–248 (1994)Google Scholar
  54. 416.
    A.M. Prakash, S. Unnikrishnan, J. Chem. Soc. Faraday Transactions, Royal Society of Chemistry, London, 90, 2291 (1994)Google Scholar
  55. 417.
    Y. Xu et al. J. Chem. Soc., Faraday Transactions 86, 2, 425–429 (1990)Google Scholar
  56. 418.
    E.M. Flanigen, B.M. Lok, R.L. Pattonand S.T.Wilson Aluminophosphatemolecular sieves and the periodictable, in New Developments in ZeoliteScience and Technology, in Proceedings 7th International Zeolite conference, Tokyo, 1986 eds. Y. Murakami, A. Ijima, J.W. Ward (Elsevier, Amsterdam,1987), pp. 103–112Google Scholar
  57. 419.
    Z.-M. Cui, Q. Liu, W.-G. Song, L.-J. Wan, Insights into the Mechanism of Methanol-to-Olefin Conversion at Zeolites with Systematically Selected Framework Structures. Angew. Chem. Int. Ed. 45, 6512–6515 (2006)Google Scholar
  58. 420.
    C. Baerlocher, W.M. Meier, D.H. Olson, Atlas of Zeolite Framework Types, 5th edn. (2001)Google Scholar
  59. 421.
    J.F. Haw, W. Song, D.M. Marcus, J.B. Nicholas, The Mechanism of Methanol to Hydrocarbon Catalysis. Acc. Chem. Res. 36, 317–326 (2003)Google Scholar
  60. 422.
    J.F. Haw, D.M. Marcus, Well-defined (supra)molecular structures in zeolite methanol-to-olefin catalysis. Topics Catal. 34, 1–4, 41–48 (2005)Google Scholar
  61. 423.
    J.Q. Chen, A. Bozzano, B. Glover, T. Fuglerud, S. Kvisle, Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process. Catal. Today 106, 103–107 (2005)Google Scholar
  62. 424.
    PERP Program -Developments in para-Xylene Technology. http://www.chemsystems.com/about/cs/news/items/PERP%200809S11_paraXylene.cfm
  63. 425.
    J. Scherzer, Octane-enhancing, Zeolitic FCC Catalysts: Scientific and Technical Aspects (1990)Google Scholar
  64. 426.
  65. 427.
  66. 428.
    M. Schneider, F. Schmidt, G. Burgfels, H. Buchold, Friedrich-Wilhelm, Möller, Süd-Chemie AG, METALLGESELLSCHAFT AG, European Patent EP0448000Google Scholar
  67. 429.
  68. 430.
  69. 431.
  70. 432.
    M. Arné, H.W. Scheeline, PEP Report 146, Bulk Chemicals from Synthesis Gas, June 1982Google Scholar
  71. 433.
    S. Kvisle, T. Fuglerud, S. Kolboe, U. Olsbye, K.P. Lillerud, B.V. Vora, “Methanol-to-Hydrocarbons” in Handbook of Heterogeneous Catalysis, 2, pp. 707Google Scholar
  72. 434.
    T. Xu, J.L. White, U. S. Patent 6,734,330, 2004, priority filingand PCT published Feb 2000Google Scholar
  73. 435.
    T. Xu, J.L. White, U. S. Patent 6,743,747, 2004, priority filingand PCT published Feb 2000Google Scholar
  74. 436.
    A. Dyer, An Introduction to Zeolite Molecular Sieves (Wiley, New York, 1988)Google Scholar
  75. 437.
    S.E. Volz, J.J. Wise, Development studies on conversion of methanol and related oxygenates to gasoline. Final Report ERDA Contract No. E(49-18)-1773 (1976)Google Scholar
  76. 438.
    A. Kam, W. Lee, Fluid-bed process studies of the conversion of methanol to high octane gasoline. Final Report Contract No. EX-76-C-01-2490 (1978)Google Scholar
  77. 439.
    K.-H. Keim, F.J. Krambeck, J. Maziuk, A. Tonnesmann, ERDÖL, ERDGAS, KOHLE, 103. Jahrgang, Heft 2, Feb 1987Google Scholar
  78. 440.
    C.D. Chang, C.T.-W. Chu, R.F. Socha, J. Catal. 86, 289–296 (1984)Google Scholar
  79. 441.
    S.A. Tabak, F.J. Krambeck, Shaping Process makes Fuels. Hydrocarbon Process. 64, 9, 72–74 (1985)Google Scholar
  80. 442.
    A.A. Avidan Gasoline and distillate fuels from methanol, in Methane conversion proceedings of a symposium on the production of fuels and chemicals from natural gas, ed. by D.M. Bibby, C.D. Chang, R.F. Howe, S. Yurchak, Studies in Surface Science and Catalysis, 36, pp. 307–323 (1988)Google Scholar
  81. 443.
    N. Daviduk, J.H. Haddad; United States Patent4,431,856, Assignee: Mobil Oil Corporation (1984)Google Scholar
  82. 444.
    U.S. Pat. No. 6,023,005Google Scholar
  83. 445.
  84. 446.
    Shenhua Ningxia Coal Industry Group Co is a joint venture between the Ningxia provincialgovernment and China’s largest coal producer Shenhua Group Corp, with 49 and 51 % stake-holding, respectivelyGoogle Scholar
  85. 447.
  86. 448.
  87. 449.
    E.N. Givens, C.J. Plank, Edward J.Rosinski; US Patent 3,960,978, 1976Google Scholar
  88. 450.
    D.Wei, T. Voskoboynikov*, M. Quick, UOP LLC, 50 East Algonquin Road, Des Plaines, IL 60017, USA, W. Vermeiren, ATOFINA Research, Zone Industrielle C, B-7181 Feluy, BelgiumGoogle Scholar
  89. 451.
    DE000010233069C1 assigned to Lurgi AG, Frankfurt, DE, 19.07.2002Google Scholar
  90. 452.
    D.Wei, T.Voskoboynikov*, M.Quick, UOP LLC, 50 East Algonquin Road, Des Plaines, IL 60017, USA, W.Vermeiren, ATOFINA Research, Zone Industrielle C, B-7181 Feluy, BelgiumGoogle Scholar
  91. 453.
    T. Ren, M.K. Patel, K. Blok, Energy 33, 817–833 (2008)Google Scholar
  92. 454.
    Kvisle S, Nilsen HR, MTO: state of art and perspectives. In: DGMK conference: creating value from light olefins-production and conversion in Hamburg. Hamburg: German Society for Petroleum and Coal Science and Technology (2001)Google Scholar
  93. 455.
    US Patent Office. Methanol-to-olefin process with increased selectivity to ethylene and propylene (US Patent 6,534,692). UOP LLC, US Patent Office (2003)Google Scholar
  94. 456.
    J. Gregor Meeting the changing needs of the olefins market by UOP LLC. In: The 5th EMEA petrochemical technology conference in Paris. London: Euro Petroleum Consultancy Ltd. (2003)Google Scholar
  95. 457.
    J. Grootjans, V. Vanrysselberghe, W. Vermeiren, Integration of total petrochemicals: UOP olefins conversion process into a naphtha steam cracker facility. Catal. Today 106(1–4), 57–61 (2005)Google Scholar
  96. 458.
    P. Keep, Comparison of remote gas conversion technologies (Synetix Inc., London, 1999). See also: www.synetix.com/methanol/pdfs/papers/imtof99-paper9(59w).pdfS
  97. 459.
    US Patent Office. Production of light olefins from oxygenate using framework gallium-containing medium pore molecular sieve (US Patent application 20030018231). ExxonMobil Inc., US Patent Office, 2003Google Scholar
  98. 460.
    W. Liebner, GTC-Gas to Chemicals Process Options for Venezuela by Lurgi Oel-Gas Chemie Engineering. In: PdVSA-EFO seminar. Caracas, Venezuela: Petro′leos de Venezuela S.A. (2002)Google Scholar
  99. 461.
    H. Koempel, W. Liebne, M. Wagner, MTP—an economic route to dedicated propylene. In: The 2nd ICIS-LOR world olefins conference (ICIS-LOR Inc., Amsterdam, 2003)Google Scholar
  100. 462.
    M. Rothaemel, H.D. Holtmann, MTP, Methanol-to-Propylene—Lurgi’s way, in DGMK conference “creating value from light olefins—production and conversion” (German Society for Petroleum and Coal Science and Technology, Hamburg, 2001)Google Scholar
  101. 463.
    L. Yingxu Wei, J. Li, S. Xu, C. Yuan, L. Xu, J. Chen, Y. Zhou, Y. Qi, Z. Liu, 12th ICC, München 2012, AbstractsGoogle Scholar
  102. 464.
  103. 465.
  104. 466.

References to Section 6.4.3

  1. 467.
    De Witt Bits 2011 Global Industry Overview, Methanol and Derivatives Service, 1st Feb 2012Google Scholar
  2. 468.
    R. Kempf, Advantages of Commercialization of the UOP Advanced MTO technology, 2011 Middle East Chemical Week Conference, 16–19 Oct 2011, Abu Dhabi National Exhibition centreGoogle Scholar
  3. 469.
    IHS INC, 2012Google Scholar
  4. 470.
    Propylene Feedstock Diversification Conference, Shanghai, 2012Google Scholar
  5. 471.
    H. Hui, ‘China annual methanol demand to spike on MTO, MTP projects’, ICIS news, Oct 2012, http://www.icis.com/Articles/2012/10/30/9604963/china-annual-methanol-demand-to-spike-on-mto-mtp-projects.html
  6. 472.
  7. 473.
    R.J Argauer, G.R., Landolt, US Patent 3,702,886Google Scholar
  8. 474.
    C.D. Chang, A.J. Silvestri, J. Catal., 47, 249–259 (1977)Google Scholar
  9. 475.
    C.D. Chang, A.J. Silvestri, ChemTech 10, 624 (1987)Google Scholar
  10. 476.
    P. Trabold, Sustainable Routes to Petrochemical Products, in 7th international petrochemical conference, Athene, 23th/24th June 2005Google Scholar
  11. 477.
    M. Stöcker, Microporous and Mesoporous Mater., 3–48 (1999)Google Scholar

References to Section 6.4.4

  1. 478.
    R.J. Argauer, G.R. Landolt, US Patent 3,702,886Google Scholar
  2. 479.
    C.D. Chang, A.J. Silvestri, J. Catal. 47, 249–259 (1977)Google Scholar
  3. 480.
    C.D. Chang, A.J. Silvestri, ChemTech 10, 624 (1987)Google Scholar
  4. 481.
    C.D. Chang, in Methanol to Hydrocarbons, Handbook of Heterogeneous Catalysis, Ertl, G., Knözinger, H. & Weitkamp, 1st edn., p. 1894Google Scholar
  5. 482.
    S. Kvisle, T. Fuglerud, S. Kolboe, U. Olsbye, K.P. Lillerud, B. Vora, in Methanol-to-Hydrocarbons. Handbook of Heterogeneous Catalysis, vol 2, p. 707Google Scholar
  6. 483.
    T.J. Gregor Remans, G. Jenzer, A. Hoek, Gas-to-Liquids. Handbook of heterogeneous catalysis, pp. 2994–3010 (2008)Google Scholar
  7. 484.
    F.J. Keil, Microporous Mesoporous Mater. 29(1–2), 49–66 (1999)Google Scholar
  8. 485.
    M. Stöcker, Microporous and Mesoporous Mater. 29(1–2), 3–48 (1999)Google Scholar
  9. 486.
    The Catalyst Group Resources, Inc., Volume 2: Syngas Conversion to Products Assessment, April 2007Google Scholar
  10. 487.
    Technologies of Lurgi Oel Gas Chemie, 302.e/02.03/40, Lurgi Oel Gas Chemie GmbH, 60295 Frankfurt/Main (2003)Google Scholar
  11. 488.
    Adkins, Perkins, J. Phys. Chem. 32, 219 (1928)Google Scholar
  12. 489.
    H. Knözinger, Angew. Chem. Int. Ed. 7, 791 (1968)Google Scholar
  13. 490.
    J.R. Jain, C.N. Pillai, J. Catal. 9, 322 (1967)Google Scholar
  14. 491.
    H. Knozinger, R. Kohne, J. Catal. 5, 264 (1966)Google Scholar
  15. 492.
    K.L. Ng, Ph.D. Thesis, Imperial College of Science, Medicine and Technology, London, 1999 Google Scholar
  16. 493.
    S.G. Hindin, S.W. Weller, J. Phys. Chem. 60, 1501 (1956)Google Scholar
  17. 494.
    S.W. Weller, S.G. Hindin, J. Phys. Chem. 60, 1506 (1956)Google Scholar
  18. 495.
    B. Höhlein, Th. Grube, P. Biedermann, H. Bielawa, G. Erdmann, L. Schlecht, G. Isenberg, R. Edinger, Methanol als Energieträger, Schriften des Forschungszentrums Jülich, Reihe Energietechnik/Energy Technology Band/Volume 28Google Scholar
  19. 496.
    T.H. Fleisch, A. Basu, M.J. Gradassi, J.G. Masin, Stud. Surf. Sci. Catal. 107, 117–125 (1997)Google Scholar
  20. 497.
    T.A. Semelsberger, R.L. Borup, H.L. Greene, J. Power Sour. 156, 497–511 (2006)Google Scholar
  21. 498.
    M. Stiefel, R. Ahmad, U. Arnold, M. Döring, Fuel Process. Technol. 92, 1466–1474 (2011)Google Scholar
  22. 499.
    PERP Program: Dimethyl Ether Technology and Markets. http://www.chemsystems.com/about/cs/news/items/PERP%200708S3_DME.cfm, 6th June 2013
  23. 500.
    Hubert de Mestier du Bourg, 23rd World Gas Conference, Amsterdam 2006: http://www.igu.org/html/wgc2006/pdf/paper/add10696.pdf, 6th June 2013
  24. 501.
    T. Ogawa, N. Inoue, T. Shikada, Y. Ohno, J. Nat. Gas Chem. 12, 219–227 (2003)Google Scholar
  25. 502.
    W. Balthasar, W. Hilsebein: Methanol as a Feedstock for Power, Fuel and Olefins, in ‘Nitrogen & Methanol’, p. 261, January/February, 2003Google Scholar
  26. 503.
    U. Wagner, W. Liebner, ‘Gas To Chemicals: Advanced technologies for natural gas monetisation’ in 12th International Oil, Gas and Petrochemical Congress, Iran 2007Google Scholar
  27. 504.
  28. 505.
    G. Yang, N. Tsubaki, J. Shamoto, Y. Yoneyama, Y. Zhang, J. Am. Chem. Soc. 132, 8129–8136 (2010)Google Scholar
  29. 506.
    R. Ahmad, U. Arnold, M. Döring, in Abstract 12th ICC 2012Google Scholar
  30. 507.
    E. Unneberg, S. Kolboe, Formation of p-Xylene from Methanol over H-ZSM-5, in Methane Conversion, ed. by D.M. Bibby, C.D. Chang, R.F. Howe, S. Yurchak (Elsevier Science Publishers B.V, Amsterdam, 1988)Google Scholar
  31. 508.
    M. Conte, J.A. Lopez-Sanchez, Q. He, D.J. Morgan, Y. Ryabenkova, J.K. Bartley, A.F. Carley, S.H. Taylor, C.J. Kiely, K. Khalid, G.J. Hutchings, Catal Sci. Technol. 2, 105–112 (2012)Google Scholar
  32. 509.
    D. Zeng, J. Yang, J. Wang, J. Xu, Y. Yang, C. Ye, F. Deng, Microporous Mesoporous Mater. 98, 214–219 (2007)Google Scholar
  33. 510.
    C.P. Nicolaides, N.P. Sincadu, M.S. Scurrell, Catal. Today 71, 429 (2001)Google Scholar
  34. 511.
    J.A. Biscardi, E. Iglesia, J. Catal. 182, 117 (1999)Google Scholar
  35. 512.
    C.D. Gosling, F.P. Wilcher, L. Sullivan, R.A. Mountford, Hydrocarb. Process. 69, Dec 1991Google Scholar
  36. 513.
    S. Pradhan, R. Lloyd, J.K. Bartley, D. Bethell, S. Golunski, R.L. Jenkins, G.J. Hutchings, Chem. Sci. 3, 2958–2964 (2012)Google Scholar
  37. 514.
  38. 515.
    G.P. Hagen, M.J. Spangler, US Patent 6,166,266, 2000Google Scholar
  39. 516.
    H.-J Arpe, Industrielle Organische Chemie: Bedeutende Vor- und Zwischenprodukte, Wiley-VCH, Weinheim, 6. Vollständig überarbeitete Auflage, p. 176 (2007)Google Scholar
  40. 517.
    Helv. Chim. Acta 8, 64 (1925)Google Scholar
  41. 518.
    Ann. 474, 213, (1929)Google Scholar
  42. 519.
    Dupont patent US-2,449,469. Cited from EP1070755Google Scholar
  43. 520.
    D.S. Moulton, D.W. Naegeli, Southwest Research Institute, United States Patent, 5,746,785 May 5, 1998Google Scholar
  44. 521.
    R. Patrini, M. Marchionna, EP1070755, 2001Google Scholar
  45. 522.
    E. Stroefer, R. Sinnen, O. Schweers, J. Thiel, H. Hasse, WO/2008/074704Google Scholar
  46. 523.
    E. Jacob, WO/2011/012339Google Scholar
  47. 524.
    Diesel Fuel News, July 9, 2001 cited by Jack Peckham http://findarticles.com/p/articles/mi_m0CYH/is_14_5/ai_76908160/
  48. 525.
    D. Sanfilippo, R. Patrini, M. Marchionna, Patent US7,235,113Google Scholar

References to Section 6.5.1

  1. 526.
    G. Olah, A. Goeppert, S. Prakash, Beyond Oil and Gas: The Methanol Economy (Wiley-VCH, Weinheim, 2009)Google Scholar
  2. 527.
    J.C. Amphlett, M.J. Evans, R.A. Jones, R.F. Mann, R.D. Weir, Can. J. Chem. Eng. 63, 605–611 (1985)Google Scholar
  3. 528.
    G. Colsmann, Dissertation, Berichte des Forschungszentrums Jülich, Jül-3127, Jülich 1995Google Scholar
  4. 529.
    V. Formanski, dissertation, Fortschritt-Berichte VDI, Reihe 3 Verfahrenstechnik (VDI Verlag GmbH, Düsseldorf, 2000)Google Scholar
  5. 530.
    J.C. Amphlett, M.J. Evans, R.A. Jones, R.F. Mann, R.D. Weir, Can. J. Chem. Eng. 59(4), 720–727 (1981)Google Scholar
  6. 531.
    B. Ganser, Dissertation, Berichte des Forschungszentrums Jülich, Jül-2748, Jülich 1993Google Scholar
  7. 532.
    W. Wiese, B. Emonts, R. Peters, Int. J. Power Sour. 106, 249–257 (1999)Google Scholar
  8. 533.
    M.S. Wainwright, C.J. Jiang, D.L. Trimm, N.W. Cant, Appl. Catal. 97, 145–158 (1993)Google Scholar
  9. 534.
    M.S. Wainwright, C.J. Jiang, D.L. Trimm, N.W. Cant, Appl. Catal. 93, 245–255 (1993)Google Scholar
  10. 535.
    Messer Group GmbH, Variocarb-therm-process, can be found under http://www.messergroup.com/de/Daten/Fachbroschueren/Metallurgie/Variocarb-therm.pdf, Krefeld, 2012
  11. 536.
    Air Liquide Deutschland GmbH, Alnat C™-process, can be found under http://www.airliquide.de/loesungen/business/metall/equipment/alnatc.html, Düsseldorf, 2013
  12. 537.
  13. 538.
    T. Weiss, Dissertation, Saarbrücken, 2008Google Scholar
  14. 539.
    L. Pettersson, K. Sjostrom, Combust. Sci. Technol. 80, 265–303 (1991)Google Scholar
  15. 540.
    J.C. Brown, E. Gulari, Catal. Commu. 5, 431–436 (2004)Google Scholar
  16. 541.
    Caloric Anlagenbau GmbH, Caloric HM Plant for H 2 Generation by Methanol Reforming, can be found under http://www.caloric.com/en/produkte/h2-generation/methanol-reforming/methanol-reforming.html, Graefelfing, 2013
  17. 542.
    P. Neumann, F. von Linde, inform, 14, 5, 313-315 (2003)Google Scholar
  18. 543.
    P. Neumann, F. von Linde, MPT. Metall. Plant Technol. Int. 2, 72–75 (2003)Google Scholar
  19. 544.
    Mahler AGS GmbH, Process description for Hydroform-M plant, can be found under http://www.mahler-ags.com/hydrogen/hydroform-m.htm, Stuttgart, 2013
  20. 545.
    Mahler AGS GmbH, Process description for Hydroform-M plant, can be found under http://www.mahler-ags.com/hydrogen/hydroswing.htm, Stuttgart, 2013
  21. 546.
    Air Products and Chemicals, Inc., Hydrogen Recovery and Purification, http://www.airproducts.com/products/Gases/supply-options/prism-membrane-hydrogen-recovery-and-purification.aspx, Allentown, 2013
  22. 547.
    UOP LLC, Hydrogen selection matrix, www.uop.com/uop-hydrogen-selection-matrix, des Plaines, 2013

References to Section 6.5.2

  1. 548.
    F. Asinger, Methanol: Chemie- und Energierohstoff. Die Mobilisation der Kohle (Springer, Berlin, Germany 1986), p. 407Google Scholar
  2. 549.
    G.A. Olah, A. Goeppert, G.K.S. Prakash, Beyond Oil and Gas: The Methanol Economy (Wiley-VCH Verlag, Weinheim, Germany, 2006), p. 304Google Scholar
  3. 550.
    A.J. Appleby, F.R. Foulkes, Fuel Cell Handbook (Van Nostrand Reinhold Int. Co, New York, 1989), p. 763Google Scholar
  4. 551.
    E.W. Justi, A. Winsel, Kalte Verbrennung, Fuel Cells (Franz Steiner, Wiesbaden Germany, 1962), p. 414Google Scholar
  5. 552.
    W. Vielstich, Translated by Ives DJG. Fuel Cells (Wiley-VCH, Weinheim, Germany, 1965/70), p. 502Google Scholar
  6. 553.
    W. Vielstich, A. Lamm, H. Gasteiger (eds.), Handbook of Fuel Cells (Wiley, Chichester, UK, 2003), vol 1–4, p. 2606Google Scholar
  7. 554.
    G. Sandstede, Elektrochemische Brennstoffzellen, in Fortschritte der Chemischen Forschung (Springer, Berlin, Heidelberg, New York, 1967), pp. 171–221Google Scholar
  8. 555.
    G. Sandstede (ed.), From Electrocatalysis to Fuel Cells (University of Washington Press, Seattle and London, 1972), p. 415Google Scholar
  9. 556.
    H.A. Liebhafsky, E.J. Cairns, Fuel Cells and Fuel Batteries (Wiley, London, 1968), p. 692Google Scholar
  10. 557.
    J.O.M. Bockris, S. Srinivasan, Fuel Cells: Their Electrochemistry (McGraw-Hill Book Company, London, Sydney, Toronto, Mexico, 1969), p. 660Google Scholar
  11. 558.
    F. von Sturm, Elektrochemische Stromerzeugung (Verlag Chemie, Weinheim, Germany, 1969), p. 190Google Scholar
  12. 559.
    H.H. von Döhren, K.J. Euler, Brennstoffelemente, 6th edn., VARTA-Fachbuchreihe Bd 6, (VDI, Düsseldorf, Germany, 1971), p. 223Google Scholar
  13. 560.
    A.K. Kordesch, G. Simader, Fuel Cells and their Applications (VCH Verlagsgesellschaft Weinheim, Germany, 1996)Google Scholar
  14. 561.
    A. Heinzel, P. Beckhaus, Brennstoffzellen für portable Anwendungen: kleine Energiepakete (2006). GDCh-Wochenschau 32b: online: http://www.aktuelle-wochenschau.de/2006/woche32b/woche32b.html, p. 5
  15. 562.
    V.S. Bagotsky, Fuel cells: Problems and solutions (Wiley, New York, 2009), p. 322Google Scholar
  16. 563.
    J. Garche, Ch. Dyer, P. Moseley, Z. Ogumi, D. Rand, B. Scrosati (eds.), Encyclopedia of Electrochemical Power Sources (Elsevier, Amsterdam, 2009). (vol 1–5)Google Scholar
  17. 564.
    D. Stolten (ed.), Hydrogen and Fuel Cells: Fundamentals, Technologies and Applications, Chapters (Wiley-VCH Verlag, Weinheim, Germany, 2010), p. 878Google Scholar
  18. 565.
    D. Stolten (ed.), Hydrogen Energy (Wiley-VCH Weinheim, 2010)Google Scholar
  19. 566.
    G. Kolb, Fuel processing for fuel cells (Wiley-VCH, Weinheim Germany, 2008), p. 412Google Scholar
  20. 567.
    W. Grot, Perfluorinated cation exchange polymers, Chem. Ing. Tech. 47, MS260/75, p. 617 (1975)Google Scholar
  21. 568.
    T. Iwasita, Methanol and CO electrooxidation, vol 2, eds. by W. Vielstich, A. Lamm, H. Gasteiger, Handbook of Fuel Cells (Wiley, Chichester, UK, 2003), pp. 603–624Google Scholar
  22. 569.
    A. Heinzel, Stand der Technik von Polymer-Elektrolyt-Membran-Brennstoffzellen—ein Überblick. CIT 81: 567–571 (Special Issue: Brennstoffzellen und Wasserstofftechnologie) (2009)Google Scholar
  23. 570.
    A. Heinzel, G. Bandlamudi, W. Lehnert, High Temperature PEMFCs, in Encyclopedia of Electrochemical Power Sources, ed. by J. Garche, Ch. Dyer, P. Moseley, Z. Ogumi, D. Rand, B. Scrosati (Elsevier, Amsterdam, 2009), pp. 951–957. (vol 2)Google Scholar
  24. 571.
    L. Gubler, D. Kramer, J. Belack, Ö. Ünsal, ThJ Schmidt, G.G. Scherer, A Polybenzimidazole-Based Membrane for the Direct Methanol Fuel Cell. J. Electrochem. Soc. 154, B981–B987 (2007)Google Scholar
  25. 572.
    Q. Wang, G.Q. Sun, L.H. Jiang, Q. Xin, S.G. Sun, Y.X. Jiang, S.P. Chen, Z. Jusys, R.J. Behm, Adsorption and oxidation of ethanol on colloid-based Pt/C, PtRu/C and Pt3Sn/C catalysts: In situ FTIR spectroscopy and on-line DEMS Studies, Phys. Chem. Chem. Phys. 9, pp. 2686–2696 (2007), www.rsc.org/pccp/altfuel
  26. 573.
    Tannenberger, in Sandstede G (ed) (1972) From Electrocatalysis to Fuel Cells, 415 pages, University of Washington Press, Seattle and LondonGoogle Scholar
  27. 574.
    A. Heinzel, R. Holze, C.H. Hamann, J.K. Blum, The electrooxidation of methanol and formaldehyde at a platinum electrode: A SEESR study of radical intermediates. Electrochim. Acta 34, 657 (1989)Google Scholar
  28. 575.
    S. Wasmus, A. Küver, Methanol oxidation and direct methanol fuel cells_a selective review. J. Electroanal. Chem. 461, 14–31 (1999)Google Scholar
  29. 576.
    V.S. Bagotsky, Y.S. Vassiliev, O.A. Khazova (1977) Generalized scheme of chemisorption, electrooxidation and electroreduction of simple organic compounds on platinum group metals, J. Electroanal. Chem. 81, 229Google Scholar
  30. 577.
    A. Hamnett (2003) Direct methanol fuel cells (DMFC). In: Vielstich W, Lamm A, Gasteiger H (eds) Handbook of Fuel Cells, Vol. 1: 305-322, Wiley, Chichester, UKGoogle Scholar
  31. 578.
    M. Neergat, D. Leveratto, U. Stimming, Catalysts for Direct Methanol Fuel Cells. Fuel Cells 2(1), 25–30 (2002)Google Scholar
  32. 579.
    V.S. Bagotsky, Y.B Vassilyev (1964 and 67) Electrochimica Acta 9, 869 and 12, 1323Google Scholar
  33. 580.
    H. Binder, A. Köhling, G. Sandstede, The Anodic Oxidation of Methanol on Raney-Type Catalysts of Platinum Metals, in Hydrocarbon Fuel Cell Technology, ed. by B.S. Baker (Academic Press, New York and London, 1965), pp. 91–102Google Scholar
  34. 581.
    O.A. Petry, B.I. Podlovchenko, A.N. Frumkin, H. Lal, J. Electroanal. Chem. 10, 253 (1965)Google Scholar
  35. 582.
    J.-F. Drillet, R. Dittmeyer, K. Jüttner, L. Li, K.-M. Mangold, New composite DMFC anode with PEDOT as a mixed conducter and catalyst support. Fuel Cells 6(6), 432–438 (2006)Google Scholar
  36. 583.
    C. Cremers, M. Scholz, W. Seliger, A. Racz, W. Knechtel, J. Rittmayr, F. Grafwallner, H. Peller, U. Stimming, Developments for improved direct methanol fuel cell stacks for portable power. Fuel Cells 7(1), 21–31 (2007)Google Scholar
  37. 584.
    A.S. Arico, V. Baglio, V. Antonucci (2009) Direct Methanol Fuel Cells: History, Status and Perspectives. In: Liu H, and Zhang J (eds) Electrocatalysis of Direct Methanol Fuel Cells:_From Fundamentals to Applications, Hardcover, Chapter 1: 1-78, Wiley, Chichester, UK, and Wiley Online Library, 582 pages: http://media.wiley.com/product_data/excerpt/75/35273237/3527323775.pdf
  38. 585.
    H. Liu, J. Zhang (2009) Electrocatalysis of Direct Methanol Fuel Cells: From Fundamentals to Applications, 606 pages, Wiley-VCH Verlag, Weinheim, Germany http://eu.wiley.com/WileyCDA/WileyTitle/productCd-3527323775.html
  39. 586.
    M. Watanabe, H. Uchida (2010) Catalysts for the electro-oxidation of small molecules, 18 pages, Wiley Online Library: http://onlinelibrary.wiley.com/doi/10.1002/9780470974001.f500007/full, http://onlinelibrary.wiley.com/doi/10.1002/9780470974001.f500007/pdf
  40. 587.
    J. Wu, F. Hu, P.K. Shen, C.M. Li, Z. Wei, One-step preparation of Pt on pretreated multiwalled carbon nanotubes for methanol electrooxidation. Fuel Cells 10(1), 106–110 (2010)Google Scholar
  41. 588.
    C. Zhou, F. Peng, H. Wang, H. Yu, J. Yang, X. Fu, Facile preparation of an excellent Pt-RuO2-MnO2/CNTs nanocatalyst for anodes of direct methanol fuel cells. Fuel Cells 11(2), 301–308 (2011)Google Scholar
  42. 589.
    H. Behret, H. Binder, G. Sandstede, Inorganic and Organic Non-Noble Metal Containing Electrocatalysts for Fuel Cells, in Electrocatalysis, ed. by M.W. Breiter (The Electrochemical Society Princeton, N.J, 1974), pp. 319–338Google Scholar
  43. 590.
    C. Fischer, A. Alonso-Vante, S. Fiechter, H. Tributsch, J. Appl. Chem. 25, 1004 (1995)Google Scholar
  44. 591.
    T.S. Zhao, C. Xu, Direct Methanol Fuel Cell: Overview Performance and Operational Conditions, in Encyclopedia of Electrochemical Power Sources, Vol 2: 381-389, ed. by J. Garche, Ch. Dyer, P. Moseley, Z. Ogumi, D. Rand, B. Scrosati (Elsevier, Amsterdam, 2009)Google Scholar
  45. 592.
    T.S. Zhao, Z.X. Liang, J.B. Xu, Overview (Direct Alcohol Fuel Cells), in Encyclopedia of Electrochemical Power Sources, Vol 2: 362-369, ed. by J. Garche, Ch. Dyer, P. Moseley, Z. Ogumi, D. Rand, B. Scrosati (Elsevier, Amsterdam, 2009)Google Scholar
  46. 593.
    N.K. Beck, B. Steiger, G.G. Scherer, A. Wokaun, Methanol tolerant oxygen reduction catalysts derived from electrochemically pre-treated Bi2Pt2-yIryO7 pyrochlores. Fuel Cells 6, 26–30 (2006)Google Scholar
  47. 594.
    A.M. Remona, K.L.N. Phani, Study of methanol-tolerant oxygen reduction reaction at Pt–Bi/C bimetallic nanostructured catalysts. Fuel Cells 11(3), 385–393 (2011)Google Scholar
  48. 595.
    H. Wang, J. Liang, L. Zhu, F. Peng, H. Yu, J. Yang, High oxygen-reduction-activity and methanol-tolerance cathode catalyst Cu/PtFe/CNTs for direct methanol fuel cells. Fuel Cells 10(1), 99–105 (2010)zbMATHGoogle Scholar
  49. 596.
    J. Yang, C.H. Cheng, W. Zhou, J.Y. Lee, Z. Liu, Methanol-tolerant heterogeneous PdCo@PdPt/C electrocatalyst for the oxygen reduction reaction. Fuel Cells 10(6), 907–913 (2010)Google Scholar
  50. 597.
    Ch. Hartnig, L. Jörissen, J. Kerres, W. Lehnert, J. Scholta, Polymer electrolyte membrane fuel cells, in Materials for Fuel Cells, ed. by M. Gasik (Woodhead Publisher Ltd, Cambridge, 2008), pp. 101–184Google Scholar
  51. 598.
    A. Winsel, Galvanische Elemente, Brennstoffzellen. In: Ullmanns Encyclopädie. Bd 12, 113–136 (1974)Google Scholar
  52. 599.
    A. Heinzel, V.M. Barragán, A review of the state-of-the-art of methanol crossover in direct methanol fuel cells. J. Power Sources 84, 70 (1999)Google Scholar
  53. 600.
    Jörissen L, and Gogel V (2009) Direct Methanol: Overview. In: Garche J, Dyer Ch, Moseley P, Ogumi Z, Rand D, and Scrosati B (eds) Encyclopedia of Electrochemical Power Sources, Vol 2: 370-380, Elsevier, AmsterdamGoogle Scholar
  54. 601.
    Ch. Hartnig, L. Jörissen, W. Lehnert, J. Scholta, Direct methanol fuel cells, in Materials for Fuel Cells, ed. by M. Gasik (Woodhead Publisher Ltd, Cambridge, 2008), pp. 185–208Google Scholar
  55. 602.
    N. Neergat, K.A. Friedrich, U. Stimming, New Materials for DMFC MEAs, in Handbook of Fuel Cells, Vol 4: 856-877, ed. by W. Vielstich, A. Lamm, H. Gasteiger (Wiley, Chichester, UK, 2003)Google Scholar
  56. 603.
    Justi, Winsel 1962Google Scholar
  57. 604.
    K. Scott, E. Yu (2009) Electrocatalysis in the Direct Methanol Alkaline Fuel Cell. In: Liu H, and Zhang J (eds) Electrocatalysis of Direct Methanol Fuel Cells:_From Fundamentals to Applications, Hardcover, Chapter 13: 487-525, Wiley, Chichester, UK, and Wiley Online Library, 582 pages: http://eu.wiley.com/WileyCDA/WileyTitle/productCd-3527323775.html
  58. 605.
    H. Binder, A. Köhling, W.H. Kuhn, W. Lindner, G. Sandstede, Hydrogen and methanol fuel cells with air electrodes in alkaline electrolyte, in From Electrocatalysis to Fuel Cells, ed. by G. Sandstede (University of Washington Press, Seattle and London, 1972), pp. 131–141Google Scholar
  59. 606.
    H. Binder, A. Köhling, G. Sandstede, Effect of alloying components on the catalytic activity of platinum in the case of carbonaceous fuels, in From Electrocatalysis to Fuel Cells, ed. by G. Sandstede (University of Washington Press, Seattle and London, 1972), pp. 43–58Google Scholar
  60. 607.
    H. Binder, A. Köhling, G. Sandstede, Platinum catalysts modified by adsorption or mixing with inorganic substances, in From Electrocatalysis to Fuel Cells, ed. by G. Sandstede (University of Washington Press, Seattle and London, 1972), pp. 59–80Google Scholar
  61. 608.
    Fuel Cell (2011) 31 pages, in: Wikipedia: http://en.wikipedia.org/wiki/Fuel_cell
  62. 609.
    J.B. Hansen (2003) Methanol reformer design considerations. In: Vielstich W, Lamm A, Gasteiger H (eds) Handbook of Fuel Cells, Vol. 3: 141-148, Wiley, Chichester, UKGoogle Scholar
  63. 610.
    C. Zhang, Z. Yuan, N. Liu, S. Wang, S. Wang, Study of Catalysts for Hydrogen Production by the High Temperature Steam Reforming of Methanol. Fuel Cells 6(6), 466–471 (2006)Google Scholar
  64. 611.
    K. von Benda, H. Binder, A. Köhling, G. Sandstede, Electrochemical behaviour of tungsten carbide electrodes, in From Electrocatalysis to Fuel Cells, ed. by G. Sandstede (University of Washington Press, Seattle and London, 1972), pp. 87–100Google Scholar
  65. 612.
    D. Edlund, Methanol Fuel Cell Systems: Advancing towards Commercialisation, 206 pages (Pan Stanford Publishing Pte, Ltd, Singapure, 2011)Google Scholar
  66. 613.
    A. Heinzel (2001) Brennstoffzellen im kleinen Leistungsbereich – portable Anwendungen und Batterieersatz. In: Ledjeff-Hey K, Mahlendorf F, and Roes J (eds) Brennstoffzellen, Entwicklung Technologie Anwendung, 2. Ed.: 211-219, C.F.Müller Verlag, HeidelbergGoogle Scholar
  67. 614.
    A. Heinzel, C. Hebling, M. Müller, M. Zedda, C. Müller, Fuel cells for low power applications. J. Power Sources 105, 250–255 (2002)Google Scholar
  68. 615.
    Heinzel A (2010) Brennstoffzellen - Mobil, stationär und portabel; Stand der Entwicklungen heute. GDCh-Wochenschau 33: 4 pages online: http://www.aktuelle-wochenschau.de/2010/w33/woche33.html
  69. 616.
    S.R. Narayanan, T.I. Valdez, Portable direct methanol fuel cell systems, in Handbook of Fuel Cells, Vol 4: 1133-1141, ed. by W. Vielstich, A. Lamm, H. Gasteiger (Wiley, Chichester, UK, 2003)Google Scholar
  70. 617.
    A. Heinzel, C. Hebling, Portable PEM Systems, in Handbook of Fuel Cells, Vol 4: 1142-1151, ed. by W. Vielstich, A. Lamm, H. Gasteiger (Wiley, Chichester, UK, 2003)Google Scholar
  71. 618.
    S.R. Narayanan, T.I. Valdez, N. Rohatgi (2003) DMFC system design for portable applications. In: Vielstich W, Lamm A, Gasteiger H (eds) Handbook of Fuel Cells, Vol. 4: 894-904, Wiley, Chichester, UKGoogle Scholar
  72. 619.
    T. Ramsden (2011) Direct methanol fuel cell material handling equipment demonstration, 21 pages, NREL National Renewable Energy Laboratory, US-DoE http://www.hydrogen.energy.gov/pdfs/review11/mt004_ramsden_2011_o.pdf
  73. 620.
    A. Lamm, J. Müller, System design for transport applications, in Handbook of Fuel Cells, Vol 4: 878-893, ed. by W. Vielstich, A. Lamm, H. Gasteiger (Wiley, Chichester, UK, 2003)Google Scholar
  74. 621.
    ballard, basf, bp, daimlerchrysler, methanex, statoil (2002) Methanol Fuel Cell Alliance, 236 pages: http://www.methanol.org/Energy/Resources/Fuel-Cells/MFCA-overall-document-from-09_06.aspx
  75. 622.
    H. Dohle, J. Mergel, D. Stolten, Heat and power management of a direct-methanol-fuel-cell (DMFC) system. J. of Power Sources 111, 268–282 (2006)Google Scholar
  76. 623.
    J. Mergel, A. Glüsen, Ch. Wannek, Current Status of and Recent Developments in Direct Liquid Fuel Cells, in Hydrogen and Fuel Cells: Fundamentals, Technologies and Applications, Chapter 3: 41–60, ed. by D. Stolten (Wiley-VCH Verlag, Weinheim, Germany, 2010)Google Scholar
  77. 624.
    A. Glüsen, M. Müller, N. Kimiaie, I. Konradi, J. Mergel, D. Stolten (2010) Manufacturing Technologies for Direct Methanol Fuel Cells (DMFCs). In: 18th World Hydrogen Energy Conference - WHEC 2010 Proceedings, Parallel Sessions Book 1: 219-226, Stolten D, and Grube Th (Eds), Zentralbibliothek Forschungszentrum Jülich 2010, Schriften des Forschungszentrum Jülich, ISBN: 978-3-89336-658-4Google Scholar
  78. 625.
    H.-P. Schmid, J. Ebner, DaimlerChrysler fuel cell activities, in Handbook of Fuel Cells, Vol 4: 1167-1171, ed. by W. Vielstich, A. Lamm, H. Gasteiger (Wiley, Chichester, UK, 2003)Google Scholar
  79. 626.
    A. Rodrigues, M. Fronk, B. McCormick, General Motors/OPEL fuel cell activities – Driving towards a successful future, in Handbook of Fuel Cells, Vol 4: 1172-1179, ed. by W. Vielstich, A. Lamm, H. Gasteiger (Wiley, Chichester, UK, 2003)Google Scholar
  80. 627.
    Garche J (2010) Portable Applications and Light Traction. In: Stolten D (ed) Hydrogen and Fuel Cells: Fundamentals, Technologies and Applications, Chapter 35: 715-734, Wiley-VCH Verlag, Weinheim, GermanyGoogle Scholar
  81. 628.
    Wärtsilä installs fuel cell unit on vessel (2010) http://www.wartsila.com/en/press-releases/newsrelease357
  82. 629.
    G. Sandstede, E.J. Cairns, V.S Bagotsky, K. Wiesener (2003) History of low temperature fuel cells. In: Vielstich W, Lamm A, Gasteiger H (eds) Handbook of Fuel Cells, Vol. 1: 145-218, Wiley, Chichester, UKGoogle Scholar
  83. 630.
    P. Kurzweil, History: Fuel Cells, in Encyclopedia of Electrochemical Power Sources, Vol 3: 579-595, ed. by J. Garche, Ch. Dyer, P. Moseley, Z. Ogumi, D. Rand, B. Scrosati (Elsevier, Amsterdam, 2009)Google Scholar
  84. 631.
    H. Hoogers (ed.), Fuel Cell Technology Handbook, 360 pages (CRC Press, Boca Raton, London, 2003)Google Scholar
  85. 632.
    A. Heinzel, F. Mahlendorf, J. Roes (eds.), Brennstoffzellen Entwicklung-Technologie-Anwendung. 3rd. completly revised and extended Ed. (C.F. Müller Verlag, Heidelberg, 2006)Google Scholar

References to Section 6.5.3

  1. 633.
    M. Madhaiyan, P. S. Chauhan, W. J. Yim, H. P. D. Boruah, T. M. Sa in Bacteria in Agrobiology: Plant Growth Responses (Ed.: D. K. Maheshwari), Springer Berlin Heidelberg, Berlin, Heidelberg, 2011 Google Scholar
  2. 634.
    J. Schrader, M. Schilling, D. Holtmann, D. Sell, M. Filho, A. Marx, J. Vorholt, Trends Biotechnol. 27(2), 107–115 (2009)Google Scholar
  3. 635.
    C. Anthony, The biochemistry of methylotrophs, Academic Press (New York, London, 1982)Google Scholar
  4. 636.
    S.J. Giovannoni, D.H. Hayakawa, H.J. Tripp, U. Stingl, S.A. Givan, J.-C. Cho, H.-M. Oh, J.B. Kitner, K.L. Vergin, M.S. Rappé, Environ. Microbiol. 10, 1771–1782 (2008)Google Scholar
  5. 637.
    M. E. Lidstrom in The Prokaryotes (Eds.: M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, E. Stackebrandt), Springer, New York, 2006, 618Google Scholar
  6. 638.
    R. Balasubramanian, S.M. Smith, S. Rawat, L.A. Yatsunyk, T.L. Stemmler, A.C. Rosenzweig, Nature 465, 115–119 (2010)Google Scholar
  7. 639.
    J.C. Murrell, B. Gilbert, I.R. McDonald, Arch. Microbiol. 173, 325–332 (2000)Google Scholar
  8. 640.
    R.L. Lieberman, A.C. Rosenzweig, Crit. Rev. Biochem. Mol. Biol. 39, 147–164 (2004)Google Scholar
  9. 641.
    H. Dalton, Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 1207–1222 (2005)Google Scholar
  10. 642.
    G.A. Olah, A. Goeppert, G.K.S. Prakash, Beyond oil and gas (The methanol economy, Wiley-VCH, Weinheim, 2006)Google Scholar
  11. 643.
    C. Anthony, M. Ghosh, Prog. Biophys. Mol. Biol. 69, 1–21 (1998)Google Scholar
  12. 644.
    P.W. van Ophem, J. van Beeumen, J.A. Duine, Eur. J. Biochem. 212, 819–826 (1993)Google Scholar
  13. 645.
    L. Chistoserdova, L. Gomelsky, J. A. Vorholt, M. Gomelsky, Y. D. Tsygankov, M. E. Lidstrom, Microbiology (Reading, Engl.) 2000, 146 (Pt 1), 233-238Google Scholar
  14. 646.
    J.A. Vorholt, Arch. Microbiol. 178, 239–249 (2002)Google Scholar
  15. 647.
    L. Chistoserdova, Science 281, 99–102 (1998)Google Scholar
  16. 648.
    A.J. Beardsmore, P.N.G. Aperghis, J.R. Quayle, Microbiology 128, 1423–1439 (1982)Google Scholar
  17. 649.
    P.J. Large, D. Peel, J.R. Quayle, Biochem. J. 81, 470–480 (1961)Google Scholar
  18. 650.
    G.J. Crowther, G. Kosaly, M.E. Lidstrom, J. Bacteriol. 190, 5057–5062 (2008)Google Scholar
  19. 651.
    R. Peyraud, K. Schneider, P. Kiefer, S. Massou, J.A. Vorholt, J.-C. Portais, BMC Syst. Biol. 5, 189 (2011)Google Scholar
  20. 652.
    S. Vuilleumier, L. Chistoserdova, M.-C. Lee, F. Bringel, A. Lajus, Y. Zhou, B. Gourion, V. Barbe, J. Chang, S. Cruveiller et al., PLoS ONE 4, e5584 (2009)Google Scholar
  21. 653.
    H. Šmejkalová, T.J. Erb, G. Fuchs, A. Herrera-Estrella, PLoS ONE 5, e13001 (2010)Google Scholar
  22. 654.
    E. Skovran, G.J. Crowther, X. Guo, S. Yang, M.E. Lidstrom, R. Aramayo, PLoS ONE 5, e14091 (2010)Google Scholar
  23. 655.
    K. Munk, Biochemie - Zellbiologie (Thieme Verlag, Stuttgart, 2008)Google Scholar
  24. 656.
    M. T. Madigan, J. M. Martinko, T. D. Brock, Brock Mikrobiologie, Pearson Studium, München [u.a.], 2006 Google Scholar
  25. 657.
    K. Ogata, H. Nishikawa, M. Ohsugi, Agric. Biol. Chem. 33, 1519–1520 (1969)Google Scholar
  26. 658.
    A. Solà, P. Jouhten, H. Maaheimo, F. Sánchez-Ferrando, T. Szyperski, P. Ferrer, Microbiology 153, 281–290 (2007)Google Scholar
  27. 659.
    F. Bisby, Y. Roskov, A. Culham, T. Orrell, D. Nicolson, L. Paglinawan, N. Bailly, W. Appeltans, P. Kirk, T. Bourgoin et al., “Species 2000 & ITIS Catalogue of Life, 3rd February 2012. Saccharomycetes”, can be found under www.catalogueoflife.org/col/, 2012
  28. 660.
    P. Kaszycki, M. Tyszka, P. Malec, H. Kołoczek, Biodegradation 12, 169–177 (2001)Google Scholar
  29. 661.
    P. Blanco, C. Sieiro, T.G. Villa, FEMS Microbiol. Lett. 175, 1–9 (1999)Google Scholar
  30. 662.
    M.A. Gleeson, P.E. Sudbery, Yeast 4, 1–15 (1988)Google Scholar
  31. 663.
    G. Gellissen, G. Kunze, C. Gaillardin, J.M. Cregg, E. Berardi, M. Veenhuis, I. van der Klei, FEMS Yeast Res. 5, 1079–1096 (2005)Google Scholar
  32. 664.
    H. Yurimoto, N. Kato, Y. Sakai, Chem. Record. 5, 367–375 (2005)Google Scholar
  33. 665.
    R. Caspi, T. Altman, J.M. Dale, K. Dreher, C.A. Fulcher, F. Gilham, P. Kaipa, A.S. Karthikeyan, A. Kothari, M. Krummenacker et al., Nucleic Acids Res. 38, D473–D479 (2009)Google Scholar
  34. 666.
    O. Negru, O. Csutak, I. Stoica, E. Rusu, T. Vassu, Rom. Biotechnol. Lett. 15, 5369–5375 (2010)Google Scholar
  35. 667.
    H. Mogren, Process Biochem. 14, 2–4 (1979)Google Scholar
  36. 668.
    U. Faust, P. Praeve, D.A. Sukatsch, J. Ferment. Technol. 55(6), 609–614 (1977)Google Scholar
  37. 669.
    D. G. MacLennan, J. S. Gow, D. A. Stringer, Proc. R. Aust. Chem. Inst. 40(3), (1973)Google Scholar
  38. 670.
    S. Kim, P. Kim, H. Lee, J. Kim, Biotechnol. Lett. 18, 25–30 (1996)Google Scholar
  39. 671.
    J.H. Choi, J.H. Kim, M. Daniel, J.M. Lebeault, Kor. J. Appl. Microbiol. Biotechnol. 17, 392–396 (1989)Google Scholar
  40. 672.
    S. B. Pluschkell, M. C. Flickinger, Microbiology (Reading, Engl.) 148, 3223-3233 (2002)Google Scholar
  41. 673.
    L.K. Shay, H.R. Hunt, G.H. Wegner, J. Ind. Microbiol. 2, 79–85 (1987)Google Scholar
  42. 674.
    P. Kim, J.-H. Kim, D.-K. Oh, World J. Microbiol. Biotechnol. 19, 357–361 (2003)MathSciNetGoogle Scholar
  43. 675.
    L. Bélanger, M.M. Figueira, D. Bourque, L. Morel, M. Béland, L. Laramée, D. Groleau, C.B. Míguez, FEMS Microbiol. Lett. 231, 197–204 (2004)Google Scholar
  44. 676.
    A. Crémieux, J. Chevalier, M. Combet, G. Dumenil, D. Parlouar, D. Ballerini, European. J. Appl. Microbiol. 4, 1–9 (1977)Google Scholar
  45. 677.
    D. Leak in Encyclopedia of Bioprocess Technology, John Wiley & Sons, Inc, 2002 Google Scholar
  46. 678.
    T. Brautaset, Ø.M. Jakobsen, K.D. Josefsen, M.C. Flickinger, T.E. Ellingsen, Appl. Microbiol. Biotechnol. 74, 22–34 (2007)Google Scholar
  47. 679.
    P. Höfer, Y.J. Choi, M.J. Osborne, C.B. Miguez, P. Vermette, D. Groleau, Microb. Cell Fact. 9, 1–13 (2010)Google Scholar
  48. 680.
    P. Höfer, P. Vermette, D. Groleau, Biochem. Eng. J. 54, 26–33 (2011)Google Scholar
  49. 681.
    T. Holscher, U. Breuer, L. Adrian, H. Harms, T. Maskow, Appl. Environ. Microbiol. 76, 5585–5591 (2010)Google Scholar
  50. 682.
    F. J. Schendel, R. Dillingham, R. S. Hanson, K. Sano, K. Matsui, WO1999020785, 1997 Google Scholar
  51. 683.
    T. Brautaset, Ø.M. Jakobsen, K.F. Degnes, R. Netzer, I. Nærdal, A. Krog, R. Dillingham, M.C. Flickinger, T.E. Ellingsen, Appl. Microbiol. Biotechnol. 87, 951–964 (2010)Google Scholar
  52. 684.
    D. I. Stirling (Celgene Corporation (Warren, NJ)),US 5071976, 1991 Google Scholar
  53. 685.
    D.K. Oh, J.H. Kim, T. Yoshida, Biotechnol. Bioeng. 54, 115–121 (1997)Google Scholar
  54. 686.
    Z. Omer, R. Tombolini, A. Broberg, B. Gerhardson, Plant Growth Regul. 43, 93–96 (2004)Google Scholar
  55. 687.
    M.E. Lidstrom, L. Chistoserdova, J. Bacteriol. 184(7),1818 (2002)Google Scholar
  56. 688.
    R.L. Koenig, R.O. Morris, J.C. Polacco, J. Bacteriol. 184, 1832–1842 (2002)Google Scholar
  57. 689.
    C. B. Miguez, M. M. Figueira, L. Laramee, J. C. Murrell, WO2003046226, 2003 Google Scholar
  58. 690.
    M. M. Figueira, L. Laramee, J. C. Murrell, L. Belanger, D. Groleau, C. B. Miguez, US 20030104527, 2003 Google Scholar
  59. 691.
    J. Gutiérrez, D. Bourque, R. Criado, Y.J. Choi, L.M. Cintas, P.E. Hernández, C.B. Míguez, FEMS Microbiol. Lett. 248, 125–131 (2005)Google Scholar
  60. 692.
    D. Byrom, M. Carver (Imperial chemical Industries PLC), US 5077212, 1991 Google Scholar
  61. 693.
    K.A. FitzGerald, M.E. Lidstrom, Biotechnol. Bioeng. 81, 263–268 (2003)Google Scholar
  62. 694.
    Y.J. Choi, D. Bourque, L. Morel, D. Groleau, C.B. Míguez, Appl. Environ. Microbiol. 72, 753–759 (2006)Google Scholar
  63. 695.
    Y.J. Choi, C.B. Miguez, B.H. Lee, Appl. Environ. Microbiol. 70, 3213–3221 (2004)Google Scholar
  64. 696.
    C. Anthony, Adv. Microb. Physiol. 27, 113–210 (1986)Google Scholar
  65. 697.
    G.H. Wegner, W. Harder, Antonie Van Leeuwenhoek 53, 29–36 (1987)Google Scholar
  66. 698.
    T. Egli, N. Lindley, J. Gen. Microbiol. 130, 3239–3249 (1984)Google Scholar
  67. 699.
    L. Dijkhuizen, T.A. Hansen, W. Harder, Trends Biotechnol. 3, 262–267 (1985)Google Scholar
  68. 700.
    N. Kato, M. Kano, Y. Tani, K. Ogata, Agric. Biol. Chem. 38, 111–116 (1974)Google Scholar
  69. 701.
    R. Wichmann, C. Wandrey, A.F. Bückmann, M.-R. Kula, Biotechnol. Bioeng. 23, 2789–2802 (1981)Google Scholar
  70. 702.
    B. Bossow, C. Wandrey, Ann. N. Y. Acad. Sci. 506, 325–336 (1987)Google Scholar
  71. 703.
    V.I. Tishkov, V.O. Popov, Biochemistry Mosc. 69, 1252–1267 (2004)Google Scholar
  72. 704.
    P. Fröhlich, K. Albert, M. Bertau, Org. Biomol. Chem. 9, 7941 (2011)Google Scholar
  73. 705.
    R. Couderc, J. Baratti, Agric. Biol. Chem. 44, 2279–2289 (1980)Google Scholar
  74. 706.
    G. Dienys, S. Jarmalavičius, S. Budrien, D. Čitavičius, J. Sereikait, J. Mol. Catal. B Enzym. 21, 47–49 (2003)Google Scholar
  75. 707.
    Y. Sakai, Y. TANI. Agric. Biol. Chem. 50, 2615–2620 (1986)Google Scholar
  76. 708.
    M. Zhang, H.Y. Wang, Enzyme Microb. Technol. 16, 10–17 (1994)Google Scholar
  77. 709.
    G. Gellissen, Appl. Microbiol. Biotechnol. 54, 741–750 (2000)Google Scholar
  78. 710.
    G. Gellissen, C. P. Hollenberg in Encyclopedia of Food Microbiology (Ed.: Editor-in-Chief: Richard K. Robinson), Elsevier, Oxford, 1999 Google Scholar
  79. 711.
    K. Chitkala in Encyclopedia of Food Microbiology (Ed.: Editor-in-Chief: Richard K. Robinson), Elsevier, Oxford, 1999 Google Scholar
  80. 712.
    M.A. Romanos, J.J. Clare, K.M. Beesley, F.B. Rayment, S.P. Ballantine, A.J. Makoff, G. Dougan, N.F. Fairweather, I.G. Charles, Vaccine 9, 901–906 (1991)Google Scholar
  81. 713.
    A. Markaryan, C.J. Beall, P.E. Kolattukudy, Biochem. Biophys. Res. Commun. 220, 372–376 (1996)Google Scholar
  82. 714.
    J.J. Clare, F.B. Rayment, S.P. Ballantine, K. Sreekrishna, M.A. Romanos, Nat. Biotech. 9, 455–460 (1991)Google Scholar
  83. 715.
    P.A. Romero, M. Lussier, A.M. Sdicu, H. Bussey, A. Herscovics, Biochem. J. 321, 289–295 (1997)Google Scholar
  84. 716.
    Y. Sakai, T. Rogi, R. Takeuchi, N. Kato, Y. Tani, Appl. Microbiol. Biotechnol. 42, 860–864 (1995)Google Scholar
  85. 717.
    M.W. de Vouge, A.J. Thaker, I.H. Curran, L. Zhang, G. Muradia, H. Rode, H.M. Vijay, Int. Arch. Allergy Immunol. 111, 385–395 (1996)Google Scholar
  86. 718.
    G. Gellissen, M. Piontek, U. Dahlems, V. Jenzelewski, J.E. Gavagan, R. DiCosimo, D.L. Anton, Z.A. Janowicz, Appl. Microbiol. Biotechnol. 46, 46–54 (1996)Google Scholar
  87. 719.
    A. Beauvais, M. Monod, J.-P. Debeaupuis, M. Diaquin, K. Hidemitsu, J.-P. Latgé, J. Biol. Chem. 272, 6238–6244 (1997)Google Scholar
  88. 720.
    G. Gellissen, Z. A. Janowicz, A. Merckelbach, M. Piontek, P. Keup, U. Weydemann, C. P. Hollenberg, A. W. Strasser, Biotechnology (N.Y.) 9, 291–295 (1991)Google Scholar
  89. 721.
    M. Hodgkins, P. Sudbery, D. Mead, D.J. Ballance, A. Goodey, Yeast 9, 625–635 (1993)Google Scholar
  90. 722.
    R. Narciandi, L. Rodriguez, E. Rodriguez, R. Diaz, J. Delgado, L. Herrera, Biotechnol. Lett. 17, 949–952 (1995)Google Scholar
  91. 723.
    A.F. Mayer, K. Hellmuth, H. Schlieker, R. Lopez-Ulibarri, S. Oertel, U. Dahlems, A.W.M. Strasser, A.P.G.M. van Loon, Biotechnol. Bioeng. 63, 373–381 (1999)Google Scholar
  92. 724.
    P.M. Smith, C. Suphioglu, I.J. Griffith, K. Theriault, R.B. Knox, M.B. Singh, J. Allergy Clin, Immunol. 98, 331–343 (1996)Google Scholar
  93. 725.
    M.S. Payne, K.L. Petrillo, J.E. Gavagan, L.W. Wagner, R. DiCosimo, D.L. Anton, Gene 167, 215–219 (1995)Google Scholar
  94. 726.
    K. N. Faber, P. Haima, W. Harder, M. Veenhuis, G. AB, Curr. Genet. 1994, 25, 305-310Google Scholar
  95. 727.
    D. Mozley, A. Remberg, W. Gartner, Photochem. Photobiol. 66, 710–715 (1997)Google Scholar
  96. 728.
    A. Ruddat, P. Schmidt, C. Gatz, S.E. Braslavsky, W. Gärtner, K. Schaffner, Biochemistry 36, 103–111 (1997)Google Scholar
  97. 729.
    R.G. Buckholz, M.A.G. Gleeson, Nat. Biotech. 9, 1067–1072 (1991)Google Scholar
  98. 730.
    C. Zurek, E. Kubis, P. Keup, D. Hörlein, J. Beunink, J. Thömmes, M.-R. Kula, C. P. Hollenberg, G. Gellissen, Process Biochem. 1996, 31, 679-689Google Scholar
  99. 731.
    M. Rodríguez, R. Rubiera, M. Penichet, R. Montesinos, J. Cremata, V. Falcón, G. Sánchez, R. Bringas, C. Cordovés, M. Valdés et al., J. Biotechnol. 33, 135–146 (1994)Google Scholar
  100. 732.
    E.Z. Monosov, T.J. Wenzel, G.H. Lüers, J.A. Heyman, S. Subramani, J. Histochem. Cytochem. 44, 581–589 (1996)Google Scholar
  101. 733.
    S.A. Rosenfeld, D. Nadeau, J. Tirado, G.F. Hollis, R.M. Knabb, S. Jia, Protein Expr. Purif. 8, 476–482 (1996)Google Scholar
  102. 734.
    U. Weydemann, P. Keup, M. Piontek, A.W. Strasser, J. Schweden, G. Gellissen, Z.A. Janowicz, Appl. Microbiol. Biotechnol. 44, 377–385 (1995)Google Scholar
  103. 735.
    F. Talmont, S. Sidobre, P. Demange, A. Milon, L.J. Emorine, FEBS Lett. 394, 268–272 (1996)Google Scholar
  104. 736.
    S.C. Gilbert, H. van Urk, A.J. Greenfield, M.J. McAvoy, K.A. Denton, D. Coghlan, G.D. Jones, D.J. Mead, Yeast 10, 1569–1580 (1994)Google Scholar
  105. 737.
    J.M. Cregg, J.F. Tschopp, C. Stillman, R. Siegel, M. Akong, W.S. Craig, R.G. Buckholz, K.R. Madden, P.A. Kellaris, G.R. Davis et al., Nat. Biotechnol. 5, 479–485 (1987)Google Scholar
  106. 738.
    Z.A. Janowicz, K. Melber, A. Merckelbach, E. Jacobs, N. Harford, M. Comberbach, C.P. Hollenberg, Yeast 7, 431–443 (1991)Google Scholar
  107. 739.
    T. Boehm, S. Pirie-Shepherd, L.-B. Trinh, J. Shiloach, J. Folkman, Yeast 15, 563–572 (1999)Google Scholar
  108. 740.
    C.K. Raymond, T. Bukowski, S.D. Holderman, A.F.T. Ching, E. Vanaja, M.R. Stamm, Yeast 14, 11–23 (1998)Google Scholar
  109. 741.
    P.F. Gallet, H. Vaujour, J.M. Petit, A. Maftah, A. Oulmouden, R. Oriol, C. Le Narvor, M. Guilloton, R. Julien, Glycobiology 8, 919–925 (1998)Google Scholar
  110. 742.
    D. Bourque, B. Ouellette, G. André, D. Groleau, Appl. Microbiol. Biotechnol. 37, 7–12 (1992)Google Scholar
  111. 743.
    D. Bourque, Y. Pomerleau, D. Groleau, Appl. Microbiol. Biotechnol. 44, 367–376 (1995)Google Scholar
  112. 744.
    T. Suzuki, T. Yamane, S. Shimizu, Appl. Microbiol. Biotechnol. 23, 322–329 (1986)Google Scholar
  113. 745.
    F.J. Schendel, C.E. Bremmon, M.C. Flickinger, M. Guettler, R.S. Hanson, Appl. Environ. Microbiol. 56(4), 963–970 (1990)Google Scholar
  114. 746.
    R. Westlake, Chem. Ing. Technol. 58, 934–937 (1986)Google Scholar
  115. 747.
    J.D. Windass, M.J. Worsey, E.M. Pioli, D. Pioli, P.T. Barth, K.T. Atherton, E.C. Dart, D. Byrom, K. Powell, P.J. Senior, Nature 287, 396–401 (1980)Google Scholar
  116. 748.
    P.J. Senior, J. Windass, Biotechnol. Lett. 2, 205–210 (1980)Google Scholar
  117. 749.
    K. Muttzall, Einführung in die Fermentationstechnik (Behr, Hamburg, 1993)Google Scholar
  118. 750.
    G.L. Solomons, CRC Crit. Rev. Biotechnol. 1, 21–58 (1985)Google Scholar
  119. 751.
    E.W. Jwanny, M.M. Rashad, Acta Biotechnol. 7, 31–38 (1987)Google Scholar
  120. 752.
    A.M. Henstra, J. Sipma, A. Rinzema, A.J.M. Stams, Curr. Opin. Biotechnol. 18, 200–206 (2007)Google Scholar
  121. 753.
    E. H. Wegner, US 4414329, 1981 Google Scholar
  122. 754.
    R. Renneberg, Biotechnologie für Einsteiger, Elsevier, Spektrum (Akad. Verl, Heidelberg, 2006)Google Scholar
  123. 755.
    U. O. Ugalde, J. I. Castrillo in Applied Mycology and Biotechnology : Agriculture and Food Production (Ed.: George G. Khachatourians and Dilip K. Arora), Elsevier, 2002 Google Scholar
  124. 756.
    G.H. Wegner, FEMS Microbiol. Lett. 87, 279–284 (1990)Google Scholar
  125. 757.
    A. Onnis-Hayden, A.Z. Gu, Proceedings of the Water Environment Federation 17, 253–273 (2008)Google Scholar
  126. 758.
    I. Purtschert, H. Siegrist, W. Gujer, Water Sci. Technol. 33(12), 117–126 (1996)Google Scholar
  127. 759.
    M. Ginige, J. Bowyer, L. Foley, J. Keller, Z. Yuan, Biodegradation 20(2), 221–234 (2009)Google Scholar
  128. 760.
    H. Lee, J.A. Brereton, D.S. Mavinic, R.A. Fiorante, W.K. Oldham, J.K. Paisley, Environ. Technol. 22(10), 1223–1235 (2001)Google Scholar
  129. 761.
    M. Komorowska-Kaufman, H. Majcherek, E. Klaczyński, Process Biochem. 41(5), 1015–1021 (2006)Google Scholar
  130. 762.
    S.D. Minteer, B.Y. Liaw, M.J. Cooney, Curr. Opin. Biotechnol. 18(3), 228–234 (2007)Google Scholar
  131. 763.
    J. Kim, H. Jia, P. Wang, Biotechnol. Adv. 24(3), 296–308 (2006)Google Scholar
  132. 764.
    P.L. Yue, K. Lowther, Chem. Eng. J. 33, B69–B77 (1986)Google Scholar
  133. 765.
    P. Kar, H. Wen, H. Li, S.D. Minteer, S.C. Barton, J. Electrochem. Soc. 158(5), B580–B586 (2011)Google Scholar
  134. 766.
    G.T.R. Palmore, H. Bertschy, S.H. Bergens, G.M. Whitesides, J. Electroanal. Chem. 443(1), 155–161 (1998)Google Scholar
  135. 767.
    A. A. Karyakin, in Electropolymerization. Wiley-VCH Verlag GmbH & Co. KGaA, 2010, 93-110Google Scholar
  136. 768.
    A. A. Karyakin, E.E. Karyakina, W. Schuhmann, H.-L. Schmidt, S.D. Varfolomeyev, Electroanalysis 6(10), 821–829 (1994)Google Scholar
  137. 769.
    P.K. Addo, R.L. Arechederra, S.D. Minteer, Electroanalysis 22(7–8), 807–812 (2010)Google Scholar
  138. 770.
    R.A. Rincón, C. Lau, K.E. Garcia, P. Atanassov, Electrochim. Acta 56(5), 2503–2509 (2011)Google Scholar
  139. 771.
    X.-C. Zhang, A. Ranta, A. Halme, Biosens. Bioelectron. 21(11), 2052–2057 (2006)Google Scholar
  140. 772.
    R. Obert, B.C. Dave, J. Am. Chem. Soc. 121, 12192–12193 (1999)Google Scholar
  141. 773.
    H. Wu, Z.Y. Jiang, S.W. Xu, S.F. Huang, Chin. Chem. Lett. 14(4), 423–425 (2003)Google Scholar
  142. 774.
    F. Baskaya, X. Zhao, M. Flickinger, P. Wang, Appl. Biochem. Biotechnol. 162(2), 391–398 (2010)Google Scholar
  143. 775.
    S. Kuwabata, R. Tsuda, K. Nishida, H. Yoneyama, Chem. Lett. 22(9), 1631 (1993)Google Scholar
  144. 776.
    S. Kuwabata, R. Tsuda, H. Yoneyama, J. Am. Chem. Soc. 116(12), 5437–5443 (1994)Google Scholar
  145. 777.
    Y. Amao, T. Watanabe, J. Mol. Catal. B Enzym. 44(1), 27–31 (2007)Google Scholar
  146. 778.
    Y. Amao, T. Watanabe, Appl. Catal., B 86(3-4), 109–113 (2009)Google Scholar
  147. 779.
    F. E. Zilly, J. P. Acevedo, W. Augustyniak, A. Deege, U. W. Häusig, M. T. Reetz, Angew. Chem., Int. Ed. 50(12), 2720–2724 (2011)Google Scholar
  148. 780.
    B. Alber, Appl. Microbiol. Biotechnol. 89(1), 17–25 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Martin Bertau
    • 1
    Email author
  • Hans Jürgen Wernicke
    • 2
  • Friedrich Schmidt
    • 3
  • Ulrich-Dieter Standt
    • 4
  • Frank Seyfried
    • 4
  • Stefan Buchholz
    • 5
  • Gereon Busch
    • 6
  • Markus Winterberg
    • 6
  • Lydia Reichelt
    • 1
  • Carsten Pätzold
    • 1
  • Sven Pohl
    • 7
  • Ludolf Plass
    • 8
  • Jürgen Roes
    • 9
  • Michael Steffen
    • 10
  • Gerd Sandstede
    • 11
  • Angelika Heinzel
    • 9
  • Sebastian Hippmann
    • 1
  • Dirk Holtmann
    • 12
  • Frank Sonntag
    • 12
  • Thomas Veith
    • 12
  • Jens Schrader
    • 12
  1. 1.Institute of Chemical TechnologyFreiberg University of Mining and TechnologyFreibergGermany
  2. 2.WolfratshausenGermany
  3. 3.RosenheimGermany
  4. 4.Volkswagen Group ResearchVolkswagen AGWolfsburgGermany
  5. 5.Evonik Industries AG, Creavis Technologies and InnovationMarlGermany
  6. 6.Evonik Industries AG LuelsdorfNiederkassel-LuelsdorfGermany
  7. 7.Air Liquide Global E&C Solutions c/o Lurgi GmbHFrankfurtGermany
  8. 8.KronbergGermany
  9. 9.Institute of Energy and Environmental Process EngineeringUniversity of Duisburg-EssenDuisburgGermany
  10. 10.The fuel cell research centre ZBT GmbHDuisburgGermany
  11. 11.Frankfurt/MGermany
  12. 12.DECHEMA Research InstituteFrankfurt/MGermany

Personalised recommendations