Advertisement

Efficient Identity-Based Encryption without Pairings and Key Escrow for Mobile Devices

  • Yan Zhu
  • Di Ma
  • Shanbiao Wang
  • Rongquan Feng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7992)

Abstract

We propose a new construction of identity-based encryption without key escrow over the tradition cryptosystems. The security of our scheme follows from the decisional Diffie-Hellman assumption and the difficulty of a new problem – modular inversion hidden number problem with error (MIHNPwE). The latter can be seen as a generalization of the modular inversion hidden number problem. We give an analysis on the hardness of MIHNPwE by lattice techniques. In our construction, we generate each user’s partial private key in the form of an MIHNPwE instance. The hardness of MIHNPwE provides our scheme with resistance against key-collusion attacks from any number of traitors.

Keywords

Random Oracle Model Identity Base Encryption Scheme Short Vector Problem Public Parameter Params 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  2. 2.
    Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Cocks, C.: An identity based encryption scheme based on quadratic residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Di Crescenzo, G., Saraswat, V.: Public key encryption with searchable keywords based on jacobi symbols. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 282–296. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Ateniese, G., Gasti, P.: Universally anonymous ibe based on the quadratic residuosity assumption. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 32–47. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Gentry, C., Hamburg, M.: Space-efficient identity based encryption without pairings. In: 48th Annual IEEE Symposium on Foundations of Computer Science, FOCS, pp. 647–657 (2007)Google Scholar
  7. 7.
    Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. SIAM J. Comput. 32(3), 586–615 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Gemmel, P.: An introduction to threshold cryptography. In: CryptoBytes, a Technical Newsletter of RSA Laboratories, vol. 2(7) (1997)Google Scholar
  10. 10.
    Chen, L., Harrison, K., Soldera, D., Smart, N.P.: Applications of multiple trust authorities in pairing based cryptosystems. In: Davida, G.I., Frankel, Y., Rees, O. (eds.) InfraSec 2002. LNCS, vol. 2437, pp. 260–275. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Gentry, C., Silverberg, A.: Hierarchical id-based cryptography. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Boneh, D.: The decision diffie-hellman problem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  13. 13.
    Micciancio, D.: The geometry of lattice cryptography. In: Aldini, A., Gorrieri, R. (eds.) FOSAD 2011. LNCS, vol. 6858, pp. 185–210. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Cheng, Z., Comley, R., Vasiu, L.: Remove key escrow from the identity-based encryption system. In: IFIP International Federation for Information Processing, vol. 155, pp. 37–50 (2004)Google Scholar
  15. 15.
    Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Boneh, D., Boyen, X.: Efficient selective-id secure identity-based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Boneh, D., Halevi, S., Howgrave-Graham, N.: The modular inversion hidden number problem. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 36–51. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Coppersmith, D.: Small solutions to polynomial equations, and low exponent rsa vulnerabilities. J. Cryptology 10(4), 233–260 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, p. 537. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yan Zhu
    • 1
  • Di Ma
    • 2
  • Shanbiao Wang
    • 3
  • Rongquan Feng
    • 3
  1. 1.School of Computer and Communication EngineeringUniversity of Science and Technology BeijingChina
  2. 2.Department of Computer and Information ScienceUniversity of Michigan-DearbornUSA
  3. 3.School of Mathematical SciencesPeking UniversityBeijingChina

Personalised recommendations