Patient’s Motion Recognition Based on SOM-Decision Tree

  • Wei Yu
  • Hongli Yan
  • Junqi Guo
  • Rongfang Bie
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7992)


Patient’s motion recognition is quite popular in the area of healthcare and medical service nowadays. By analyzing the data from variant sensors within the network, we can estimate the activities a person does. The analyzing job is usually done by a classifier which can classify each motion into one category with similar movements. Self-Organizing Map (SOM) is a kind of algorithm that can be used to arrange data into different categories without any guidance. Decision tree is a mature tool for classification. In this paper, we propose a new kind of classification method with data from BAN called SOM-Decision Tree. Firstly, we use SOM on each of the sensor nodes to categorize motions into different classes, so that motions in different classes can be distinguished by this sensor. Secondly, a decision tree is constructed to discriminate each kind of movements from other motions. Finally, any action of the same patient can be recognized by query through the decision tree. According to our experiment, this algorithm is feasible and quite efficient.


Motion recognition SOM Self-organizing Map Decision Tree classification Mobile Health 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hayes, G.R., Patterson, D.J., Singh, M., Gravem, D., Rich, J., Cooper, D.: Supporting the transition from hospital to home for premature infants using integrated mobile computing and sensor support. Personal and Ubiquitous Computing, doi:10.1007/s00779-011-0402-4Google Scholar
  2. 2.
    Cutler, R., Davis, L.: Robust Real-Time Periodic Motion Detection, Analysis, and Applications. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 781–796 (2000)CrossRefGoogle Scholar
  3. 3.
    Ståhl, O., Gambäck, B., Turunen, M., Hakulinen, J.: A Mobile Health and Fitness Companion Demonstrator. In: Proceedings of the 12th Conference of the European Chapter of the Association for Computational Linguistics: Demonstrations Session, pp. 65–68 (2009)Google Scholar
  4. 4.
    Xu, F., Qin, Z., Tan, C.C., Wang, B., Li, Q.: IMDGuard: Securing Implantable Medical Devices with the External Wearable Guardian. In: IEEE INFOCOM, pp. 1862–1870 (2011)Google Scholar
  5. 5.
    Shahriyar, R., Bari, M.F., Kundu, G., Ahamed, S.I., Akbar, M.M.: Intelligent Mobile Health Monitoring System (IMHMS). International Journal of Control and Automation 2(3), 13–28 (2009) Google Scholar
  6. 6.
    Bourouis, A., Feham, M., Bouchachia, A.: Ubiquitous Mobile Health Monitoring System for Elderly (UMHMSE). International Journal of Computer Science & Information Technology 3(3), 74–82 (2011)CrossRefGoogle Scholar
  7. 7.
    Jones, V., van Halteren, A., Widya, I., Dokovsky, N., Koprinkov, G., Bults, R., Konstantas, D., Herzog, R.: Mobihealth: Mobile Health Services Based on Body Area Networks. In: M-Health Emerging Mobile Health Systems, pp. 219–236 (2006)Google Scholar
  8. 8.
    Ullah, S., Higgins, H., Braem, B., Latre, B., Blondia, C., Moerman, I., Saleem, S., Rahman, Z., Kwak, K.S.: A Comprehensive Survey of Wireless Body Area Networks. Journal of Medical Systems 36(3), 1065–1094 (2012)CrossRefGoogle Scholar
  9. 9.
    Wu, C., Tseng, Y.: Data Compression by Temporal and Spatial Correlations in a Body-Area Sensor Network: A Case Study in Pilates Motion Recognition. IEEE Transactions on Mobile Computing 10(10), 1459–1472 (2011)CrossRefGoogle Scholar
  10. 10.
    Solomon, M., Wagner, S.L., Goes, J.: Effects of a Web-Based Intervention for Adults With Chronic Conditions on Patient Activation: Online Randomized Controlled Trial. Journal of Medical Internet Research 14(1) (2012), doi:10.2196/jmir.1924Google Scholar
  11. 11.
    Wang, Y., Lin, J., Annavaram, M., Jacobson, Q.A., Hong, J., Krishnamachari, B., Sadeh, N.: A Framework of Energy Efficient Mobile Sensing for Automatic User State Recognition. In: Proceeding of MobiSys (2009)Google Scholar
  12. 12.
    Hong, Y., Kim, I., Ahn, S.C., Kim, H.: Mobile health monitoring system based on activity recognition using accelerometer. In: Simulation Modeling Practice and Theory, pp. 446–455 (2010)Google Scholar
  13. 13.
    Zappi, P., Stiefmeier, T., Farella, E., Roggen, D., Benini, L., Troster, G.: Activity recognition from on-body sensors by classifier fusion: sensor scalability and robustness. In: Proceeding of 3rd International Conference on Intelligent Sensors, Sensor Networks and Information, pp. 281–286 (2007)Google Scholar
  14. 14.
    Aziz, O., Atallah, B.L., ElHelw, M., Wang, L., Yang, G.Z., Darzi, A.: A Pervasive Body Sensor Network for Measuring Postoperative Recovery at Home. Surgical Innovation 14(2), 83–90 (2007)CrossRefGoogle Scholar
  15. 15.
    Ermes, M., Parkka, J., Mantyjarvi, J., Korhonen, I.: The ingestible telemetric body core temperature sensor in Controlled and Uncontrolled Conditions. IEEE Transactions on Information Technology in Biomedicine 12(1), 20–26 (2008)CrossRefGoogle Scholar
  16. 16.
    Kohonen, T.: The Self-Organizing Map. Proceedings of The IEEE 78(9), 1464–1480 (1990)CrossRefGoogle Scholar
  17. 17.
    Chi, Z., Wu, J., Yan, H.: Handwritten numeral recognition using self-organizing maps and fuzzy rules. Pattern Recognition 28(1), 59–66 (1995)CrossRefGoogle Scholar
  18. 18.
    Kitakyushu: SOM of SOMs. Neural Networks 22(4), 463–478 (2009)CrossRefGoogle Scholar
  19. 19.
    Hu, W., Xie, D., Tan, T., Maybank, S.: Learning Activity Patterns Using Fuzzy Self-Organizing Neural Network. IEEE Transactions on Systems, Man, and Cybernetics–Part B: Cybernetics 34(3), 1618–1626 (2004)CrossRefGoogle Scholar
  20. 20.
    Pakkanen, J., Iivarinen, J., Oja, E.: The Evolving Tree – Analysis and Applications. IEEE Transactions on Neural Networks 17(3) (2006)Google Scholar
  21. 21.
    Vesanto, J., Alhoniemi, E.: Clustering of the Self-Organizing Map. IEEE Transactions on Neural Networks 11(3), 586–600 (2000)CrossRefGoogle Scholar
  22. 22.
    Brugger, D., Bogdan, M., Rosenstiel, W.: Automatic Cluster Detection in Kohonen’s SOM. IEEE Transactions on Neural Networks 19(3), 442–459 (2008)CrossRefGoogle Scholar
  23. 23.
    Lau, K.W., Yin, H., Hubbard, S.: Kernel Self-Organsing Maps for Classification. Neurocomputing 69, 2033–2040 (2006)CrossRefGoogle Scholar
  24. 24.
    Suganthan, P.N.: Hierarchical Overlapped SOM’s for Pattern Classification. IEEE Transactions on Neural Networks 10(1), 193–196 (1999)CrossRefGoogle Scholar
  25. 25.
    Li, Z., Eastman, J.R.: The Nature and Classification of Unlabelled Neurons in the Use of Kohonen’s Self-Organizing Map for Supervised Classification. Transactions in GIS 10(4), 599–613 (2006)CrossRefGoogle Scholar
  26. 26.
    Vesanto, J.: SOM-based Data Visualization Methods. Intelligent Data Analysis 3(2), 111–126 (1999)zbMATHCrossRefGoogle Scholar
  27. 27.
    Côme, E., Cottrell, M., Verleysen, M., Lacaille, J.: Aircraft Engine Health Monitoring Using Self-Organizing Maps. In: Perner, P. (ed.) ICDM 2010. LNCS (LNAI), vol. 6171, pp. 405–417. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  28. 28.
    Sirola, M., Lampi, G., Parviainen, J.: SOM Based Decision Support in Failure Management. In: IEEE Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, pp. 468–473 (2005)Google Scholar
  29. 29.
    Krause, A., Smailagic, A., Siewiorek, D.P.: Context-Aware Mobile Comupting: Learning Context-Dependent Personal Preferences from a Wearable Sensor Array. IEEE Transactions on Mobile Computing 5(2), 113–128 (2006)CrossRefGoogle Scholar
  30. 30.
    Suzuki, S., Mitsukura, Y., Igarashi, H., Kobayashi, H., Harashima, F.: Activity recognition for children using self-organizing map. In: 2012 IEEE RO-MAN, pp. 653–658 (2012)Google Scholar
  31. 31.
    Hattori, Y., Kyushu, K., Inoue, S., Hirakawa, G.: Visualization for Activity Information Sharing System Using Self-Organizing Map. In: Proceeding of International Conference in Broadband and Wireless Computing, Communication and Applications (BWCCA), pp. 537–542 (2011)Google Scholar
  32. 32.
    Kurdthongmee, W.: A Self Organizing Map Based Motion Classifier with an Extension to Fall Detection Problem and Its Implementation on a Smartphone. Applications of Self-Organizing Maps (2012)Google Scholar
  33. 33.
    Seiffert, U.: Growing multi-dimensional self-organizing maps for motion detection. Self-Organizing Neural Networks (2002)Google Scholar
  34. 34.
    Ghasemzadeh, H., Barnes, J., Guenterberg, E., Jafari, R.: A Phonological Expression for Physical Movement Monitoring in Body Sensor Networks. In: Proceeding of 5th IEEE International Conference on Mobile Ad Hoc and Sensor Systems, pp. 58–68 (2008)Google Scholar
  35. 35.
    Bao, L., Intille, S.S.: Activity Recognition from User-Annotated Acceleration Data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004), doi:10.1007/978-3-540-24646-6_1CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Wei Yu
    • 1
  • Hongli Yan
    • 1
  • Junqi Guo
    • 1
  • Rongfang Bie
    • 1
  1. 1.College of Information Science and TechnologyBeijing Normal UniversityBeijingChina

Personalised recommendations