Advertisement

ActiviTune: A Multi-stage System for Activity Recognition of Passive Entities from Ambient FM-Radio Signals

  • Shuyu Shi
  • Stephan Sigg
  • Yusheng Ji
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7992)

Abstract

The amplitude of a received RF-signal is affected by physical phenomena, such as reflection, refraction or scattering due to objects and individuals in the signal propagation path. Activities in the proximity of a receiver can thus induce a characteristic pattern on amplitude-based features. We investigate the use of the radio frequency channel to detect activities. ActiviTune, our passive device-free recognition system, implements a multi-stage classifier to recognise activities and situations in an indoor environment leveraging amplitude-based features of RF signals from an ambient FM radio source. Comparing with other RF-based approaches, ActiviTune has the advantage of neither installing a transmitter generating the signal nor equipping the monitored entities with any active component of the system. We experimentally demonstrate the distinction of two dynamic activities, ’walking’, ’crawling’, and three static activities, ’empty room’, ’standing’, ’lying’ with an average true positive rate of over 80%.

Keywords

Activity recognition ambient context multi stage recognition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, I., Muller, H.: Context awareness via gsm signal strength fluctuation. In: 4th International Conference on Pervasive Computing, Late Breaking Results (2006)Google Scholar
  2. 2.
    Bao, L., Intille, S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Chen, Y., Lymberopoulos, D., Liu, J., Priyantha, B.: Fm-based indoor localization. In: Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services, MobiSys 2012, pp. 169–182. ACM, New York (2012)CrossRefGoogle Scholar
  4. 4.
    Ding, Y., Banitalebi, B., Miyaki, T., Beigl, M.: Rftraffic: Passive traffic awareness based on emitted rf noise from the vehicles. In: 2011 11th International Conference on ITS Telecommunications (ITST), pp. 393–398 (August 2011)Google Scholar
  5. 5.
    Kosba, A.E., Saeed, A., Youssef, M.: Rasid: A robust wlan device-free passive motion detection system. CoRR, abs/1105.6084 (2011)Google Scholar
  6. 6.
    Ogris, G., Lukowicz, P., Stiefmeier, T., Tröster, G.: Continuous activity recognition in a maintenance scenario: combining motion sensors and ultrasonic hands tracking. Pattern Analysis & Applications 15, 87–111 (2012)CrossRefGoogle Scholar
  7. 7.
    Palaiyanur, H., Woyach, K., Tandra, R., Sahai, A.: Spectrum zoning as robust optimization. In: 2010 IEEE Symposium on New Frontiers in Dynamic Spectrum, pp. 1–12 (April 2010)Google Scholar
  8. 8.
    Patel, S.N., Robertson, T., Kientz, J.A., Reynolds, M.S., Abowd, G.D.: At the flick of a switch: Detecting and classifying unique electrical events on the residential power line. In: Krumm, J., Abowd, G.D., Seneviratne, A., Strang, T. (eds.) UbiComp 2007. LNCS, vol. 4717, pp. 271–288. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Patwari, N., Wilson, J.: Rf sensor networks for device-free localization: Measurements, models, and algorithms. Proceedings of the IEEE 98(11), 1961–1973 (2010)CrossRefGoogle Scholar
  10. 10.
    Popleteev, A., Osmani, V., Mayora, O.: Investigation of indoor localization with ambient fm radio stations. In: 2012 IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 171–179 (March 2012)Google Scholar
  11. 11.
    Reschke, M., Starosta, J., Schwarzl, S., Sigg, S.: Situation awareness based on channel measurements. In: Proceedings of the Fourth Conference on Context Awareness for Proactive Systems, CAPS (2011)Google Scholar
  12. 12.
    Scholz, M., Sigg, S., Shihskova, D., von Zengen, G., Bagshik, G., Guenther, T., Beigl, M., Ji, Y.: Sensewaves: Radiowaves for context recognition. In: Video Proceedings of the 9th International Conference on Pervasive Computing, Pervasive 2011 (2011)Google Scholar
  13. 13.
    Seifeldin, M., Youssef, M.: Nuzzer: A large-scale device-free passive localization system for wireless environments. CoRR, abs/0908.0893 (2009)Google Scholar
  14. 14.
    Shi, S., Sigg, S., Ji, Y.: Activity recognition from radio frequency data: Multi-stage recognition and features. In: 2012 IEEE Vehicular Technology Conference, VTC Fall (2012)Google Scholar
  15. 15.
    Sohn, T., Varshavsky, A., LaMarca, A., Chen, M.Y., Choudhury, T., Smith, I., Consolvo, S., Hightower, J., Griswold, W.G., de Lara, E.: Mobility detection using everyday gsm traces. In: Dourish, P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, pp. 212–224. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Van Laerhoven, K., Gellersen, H.-W.: Spine versus porcupine: a study in distributed wearable activity recognition. In: Eighth International Symposium on Wearable Computers, ISWC 2004, vol. 1, pp. 142–149 (2004)Google Scholar
  17. 17.
    Wilson, J., Patwari, N.: Through-wall tracking using variance-based radio tomography networks. CoRR, abs/0909.5417 (2009)Google Scholar
  18. 18.
    Wilson, J., Patwari, N.: Radio tomographic imaging with wireless networks. IEEE Transactions on Mobile Computing 9, 621–632 (2010)CrossRefGoogle Scholar
  19. 19.
    Woyach, K., Puccinelli, D., Haenggi, M.: Sensorless sensing in wireless networks: implementation and measurements. In: Proceedings of the Second International Workshop on Wireless Network Measurement, WiNMee (2006)Google Scholar
  20. 20.
    Youssef, M., Mah, M., Agrawala, A.: Challenges: Device-free passive localizsation for wireless environments. In: Proceedings of the 13th Annual ACM International Conference on Mobile Computing and Networking (MobiCom 2007), pp. 222–229 (2007)Google Scholar
  21. 21.
    Zhang, D., Ni, L.: Dynamic clustering for tracking multiple transceiver-free objects. In: Proceedings of the 7th IEEE International Conference on Pervasive Computing and Communications, PerCom 2009 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Shuyu Shi
    • 1
  • Stephan Sigg
    • 1
  • Yusheng Ji
    • 1
  1. 1.National Institute of InformaticsTokyoJapan

Personalised recommendations