Skip to main content

Structural Behaviour and Retrofitting of Adobe Masonry Buildings

  • Chapter
  • First Online:
Structural Rehabilitation of Old Buildings

Abstract

Earth is one of the most widely used building materials in the World. Different types of adobe dwellings are made to assure protection and wellbeing of the population according to the diverse zones needs. Therefore, it is important to study the structural behaviour of the adobe masonry constructions, analysing their seismic vulnerability, which may help in preventing social, cultural and economic losses. In the present chapter, an explanation of the seismic behaviour of adobe buildings, a summary of recent research outputs from experimental tests conducted on adobe masonry components and from numerical modelling of full-scale representative adobe constructions are reported. In addition, different rehabilitation and strengthening solutions are presented and results from the testing of retrofitted adobe constructions and components are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Houben, H., Guillard, H.: Earth Construction: a Comprehensive Guide. Practical Action, London (1994)

    Google Scholar 

  2. Memari, A.M., Kauffman, A.: Review of existing seismic retrofit methodologies for adobe dwellings and introduction of a new concept. In: Proceedings of SismoAdobe2005, Pontificia Universidad Católica del Perú, 15, Lima, Peru. (2005)

    Google Scholar 

  3. Blondet, M., Vargas, J., Velásquez, J., Tarque, N.: Experimental study of synthetic mesh reinforcement of historical adobe buildings. In: Lourenço, P.B., Roca, P., Modena, C., Agrawal. S. (eds) Proceedings of Structural Analysis of Historical Constructions, pp. 1–8, New Delhi, India (2006)

    Google Scholar 

  4. Dowling, D.: Adobe housing in El Salvador: Earthquake performance and seismic improvement. In: Rose, I., Bommer, J.J., López, D.L., Carr, M.J., Major, J.J. (eds) Geological Society of America Special Papers, 281–300 (2004)

    Google Scholar 

  5. De Sensi, B.: Terracruda, la diffusione dell’architettura di terra. www.terracruda.com/architetturadiffusione.htm (2003)

  6. Lowman, P.D., Montgomery, B.C.: Preliminary determination of epicenters of 358,214 events between 1963 and 1998, (2008). http://denali.gsfc.nasa.gov/dtam/seismic/. Accessed in June 2011

  7. Fratini, F., Pecchioni, E., Rovero, L., Tonietti, U.: The earth in the architecture of the historical centre of Lamezia Terme (Italy): Characterization for restoration. Constr. Build. Mater. 53, 509–516 (2011)

    Google Scholar 

  8. Fernandes, M., Portugal, M.V.: Atlântico versus Portugal Mediterrâneo: Tipologias arquitectónicas em terra. In: International Conference TerraBrasil 2006, Ouro Preto, Minas Gerais, Brazil (2006)

    Google Scholar 

  9. Varum, H., Figueiredo, A., Silveira, D., Martins, T., Costa, A.: Outputs from the research developed at the University of Aveiro regarding the mechanical characterization of existing adobe constructions in Portugal—Informes de la Construcción, doi: 10.3989/ic.10.016, July–Sept 2011, 63(523), 127–142 (2011)

  10. Tavares, A., Costa, A., Varum, H.: Adobe and modernism in Ílhavo, Portugal. Int. J. Architect. Heritage, Taylor & Francis, ISSN 1558–3058, Paper reference ID UARC-2011-0357.R1, 6(5), 525–541, doi: 10.1080/15583058.2011.590267 (2012)

  11. Sandrolini, F., Franzoni, E., Varum, H., Niezabitowska, E.: Materials and technologies in Art Nouveau architecture: Façade decoration cases in Italy, Portugal and Poland for a consistent restoration—Informes de la Construcción, Instituto de Ciencias de la Construcción Eduardo Torroja (IETcc), ISSN 0020-0883, doi 10.3989/ic.10.053, 63(524), 5–11 (2011)

  12. Dell’Acqua, A.C., Franzoni, E., Sandrolini, F., Varum, H.: Materials and techniques of Art Nouveau architecture in Italy and Portugal: A first insight for an European route to consistent restoration—International Journal for Restoration of Buildings and Monuments, Aedificatio Verlag Publishers, ISSN 1864–7251 (print-version); ISSN 1864-7022 (online-version), 15(2), 129–143 (2009)

    Google Scholar 

  13. Blondet, M., Villa-García, G., Brzev S.: Earthquake-resistant construction of adobe buildings: In: Greene, M. (ed.) A Tutorial, Report, EERI/IAEE world Housing Enciclopedy, Okland, California, USA (2003)

    Google Scholar 

  14. INEI (National Institution for Statistics and Informatic): Census 2007: XI de Población y VI de Vivienda” Report. National Institute of Statistics and Informatics, Lima (2008)

    Google Scholar 

  15. Mousavi, S.E., Khosravifar, A., Bakhshi, A., Taheri, A., Bozorgnia, Y.: Structural typology of traditional houses in iran based on their seismic behaviour.In: Proceedings of 8th U.S. National Conference on Earthquake Engineering, (2006)

    Google Scholar 

  16. Baglioni, E., Fratini, F., Rovero, L.: The material utilised in the earthen buildings sited in the Drâa Valley (Morocco): Mineral and mechanical characteristics. 6ATP, 9SIACOT, (2010)

    Google Scholar 

  17. Ruano, A., Costa, A.G., Varum, H.: Study of the common pathologies in composite adobe and reinforced concrete constructions. ASCE’s J. Perform. Constr. Facil. Am. Soc. Civil Eng. doi 10.1061/(ASCE)CF.1943-5509.0000200, 26(4), 389–401 (2012)

  18. Blondet, M., Vargas, J., Tarque, N.: Observed behaviour of earthen structures during the Pisco earthquake (Peru). In: Proceedings of 14th World Conference on Earthquake Engineering, Beijing, China (2008)

    Google Scholar 

  19. Webster, F., Tolles. L.: Earthquake damage to historic and older adobe buildings during the 1994 Northridge, California Earthquake. In: Proceedings of 12th World Conference on Earthquake Engineering, Auckland, New Zealand (2000)

    Google Scholar 

  20. ASTM E519/E519 M–10: Standard Test Method for Diagonal Tension (Shear) in Masonry Assemblages. ASTM International, West Conshohocken (2010)

    Google Scholar 

  21. EN 1052–1: Methods of test for masonry—Part 1: Determination of compressive strength. European Committee for Standardization (CEN), Brussels (1998)

    Google Scholar 

  22. Martins, T., Varum, H.: Adobe’s Mechanical Characterization in Ancient Constructions: The Case of Aveiro’s Region—Materials Science Forum, Trans Tech Publications, Switzerland, ISSN 0255-5476, vol. 514–516, pp. 1571–1575 (2006)

    Google Scholar 

  23. Silveira, D., Varum, H., Costa, A.: Influence of the testing procedures in the mechanical characterization of adobe bricks. Constr. Build. Mater. J. doi 10.1016/j.conbuildmat.2012.11.058, 40, 719–728 (2013)

  24. Silveira, D., Varum, H., Costa, A., Martins, T., Pereira, H., Almeida, J.: Mechanical properties of adobe bricks in ancient constructions—Construction & Building Materials, Elsevier, Manuscript reference CONBUILDMAT-D-11-00604, doi 10.1016/j.conbuildmat.2011.08.046, 28, 36–44 (2012)

  25. Blondet, M., Vargas, J.: Investigación sobre vivienda rural. Report, Division of Civil Engineering, Pontificia Universidad Católica del Perú, Lima, Peru (1978)

    Google Scholar 

  26. Vargas, J., Ottazzi, G.: Investigaciones en adobe. Report, Division of Civil Engineering, Pontificia Universidad Católica del Perú, Lima, (1981)

    Google Scholar 

  27. Blondet, M., Madueño, I., Torrealva, D., Villa-García, G., Ginocchio, F.: Using industrial materials for the construction of safe adobe houses in seismic areas. In: Proceedings of Earth Build 2005 Conference, Sydney, Australia, (2005)

    Google Scholar 

  28. Figueiredo, A., Varum, H., Costa, A., Silveira, D., Oliveira, C.: Seismic retrofitting solution of an adobe masonry wall. Mater. Struct. RILEM, ISSN 1359-5997, doi 10.1617/s11527-012-9895-1, 46(1–2), 203–219 (2013)

  29. Tareco, H., Grangeia, C., Varum, H., Senos-Matias, M.: A high resolution GPR experiment to characterize the internal structure of a damaged adobe wall. EAGE First Break 27(8), 79–84 (2009)

    Google Scholar 

  30. Antunes, P., Lima, H., Varum, H., André, P.: Optical fiber sensors for static and dynamic health monitoring of civil engineering infrastructures abode wall case study. Measurement 45, 1695–1705 (2012)

    Article  Google Scholar 

  31. Stavridis, A., Shing, P.B.: Finite Element Modeling of Nonlinear Behavior of Masonry-Infilled RC Frames. J. Struct. Eng. ASCE 2010, 136(3), 285–296 (2010)

    Google Scholar 

  32. Kappos, A.J., Penelis, G.G., Drakopoulos, C.G.: Evaluation of simplified models for lateral load analysis of unreinforced masonry buildings. J. Struct. Eng. 128(7), 890 (2002)

    Article  Google Scholar 

  33. Lourenço, P.B.: Computational strategies for masonry structures. Ph.D. Thesis, Delft University, Delft, The Netherlands (1996)

    Google Scholar 

  34. Page, A.W.: Finite element model for masonry. J. Struct. Eng. 104(8), 1267–1285 (1978)

    MathSciNet  Google Scholar 

  35. Roca, P., Cervera, M., Gariup, G., Pela, L.: Structural analysis of masonry historical constructions. Classical and advanced approaches. Arch. Comput. Methods Eng 17(3), 299–325 (2010)

    Google Scholar 

  36. Calderini, C., Cattari, S., Lagomarsino, S.: In plane seismic response of unreinforced masonry walls: comparison between detailed and equivalent frame models. In: Papadrakakis, M., Lagaros, N.D., Fragiadakis, M. (eds) ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Rhodes, Greece, (2009)

    Google Scholar 

  37. Gambarotta, L., Lagomarsino, S.: Damage models for the seismic response of brick masonry shear walls. Part I: The mortar joint and its applications. Earthquake Eng. Struct. Dynamics 26(4), 423–439 (1997)

    Google Scholar 

  38. Gambarotta, L., Lagomarsino, S.: Damage models for the seismic response of brick masonry shear walls. Part II: The continuum model and its applications. Earthquake Eng. Struct. Dyn. 26(4), 441–462 (1997)

    Google Scholar 

  39. Lagomarsino, S., Galasco, A., Penna A.: Non-linear macro-element dynamic analysis of masonry buildings. In: Proceedings of ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Rethymno, Crete, Greece, (2007)

    Google Scholar 

  40. Magenes, G., Della, F.A.: Simplified non-linear seismic analysis of masonry buildings. In: Proceedings of Fifth International Masonry Conference, British Masonry Society, London, England, (1998)

    Google Scholar 

  41. Ali, S.S., Page, A.W.: Finite element model for masonry subjected to concentrated loads. J. Struct. Eng. 114(8), 1761 (1987)

    Article  Google Scholar 

  42. Cao, Z., Watanabe, H.: Earthquake response predication and retrofitting techniques of adobe structures. In: Proceedings of 13th World Conference on Earthquake Engineering, Vancouver, Canada, (2004)

    Google Scholar 

  43. Furukawa, A., Ohta, Y.: Failure process of masonry buildings during earthquake and associated casualty risk evaluation. Nat. Hazards, 49, 25–51 (2009)

    Google Scholar 

  44. Rots, J.G.: Numerical simulation of cracking in structural masonry. Heron 36(2), 49–63 (1991)

    Google Scholar 

  45. Arya, S.K., Hegemier, G.A.: On nonlinear response prediction of concrete masonry assemblies. In: Proceedings of North American Masonry Conference, Boulder, Colorado, USA, pp 19.1–19.24 (1978)

    Google Scholar 

  46. Lotfi, H.R., Shing, P.B.: Interface Model Applied to fracture of masonry Structures. ASCE 120(1), 63–80 (1994)

    Article  Google Scholar 

  47. Lourenço, P.B., Rots, J.G.: Multisurface interface model for analysis of masonry structures. J. Eng. Mech. 123(7), 660 (1997)

    Article  Google Scholar 

  48. Cundall, P.A.: A computer model for simulating progressive large scale movements in blocky rock systems. In: Proceedings of Symposium on Rock Fracture (ISRM), Nancy, France, (1971)

    Google Scholar 

  49. Alexandris, A., Protopapa, E., Psycharis, I.: Collapse mechanisms of masonry buildings derived by distinct element method. In: Proceedings of 13th World Conference on Earthquake Engineering, (2004)

    Google Scholar 

  50. Tarque, N.: Numerical modelling of the seismic behaviour of adobe buildings. PhD thesis. Universitá degli Studi di Pavia, Istituto Universitario di Studi Superiori. Pavia, Italy, (2011)

    Google Scholar 

  51. Bommer, J.J., Scherbaum, F., Bungum, H., Cotton, F., Sabetta, F., Abrahamson, N.A.: On the use of logic trees for ground-motion prediction equations in seismic hazard analysis. Bull. Seismol. Soc. Am. 95(2), 377–389 (2005)

    Article  Google Scholar 

  52. Foerster, E., Krien, Y., Dandoulaki, M., Priest, S., Tapsell, S., Delmonaco, G., Margottini, C., Bonadonna, C.: Methodologies to assess vulnerability of structural systems, pp. 1–139. Seventh Framework Programme, European Commission (2009)

    Google Scholar 

  53. Giovinazzi, S.: The Vulnerability Assessment and the Damage Scenario in Seismic Risk Analysis. PhD Thesis, University of Florence and Technical University of Braunschweig, (2005)

    Google Scholar 

  54. Kramer, S.: Geotechnical Earthquake Engineering. Prentice Hall International Series, Ohio (1996)

    Google Scholar 

  55. Grünthal, G.: European Macroseicmic Scale (EMS-98), Cahiers du Centre Européen de Géodynamique et de Séismologie 15. Centre Européen de Géodynamique et de Séismologie, Luxembourg (1998)

    Google Scholar 

  56. Coburn, A., Spence, R.: Earthquake Protection. Wiley, USA (2002)

    Book  Google Scholar 

  57. Jozefiak, S.: Fragility Curves for Simple Retrofitted Structures. CM-4 Consequence, (2005)

    Google Scholar 

  58. Calvi, G.M., Pinho, R., Magenes, G., Bommer, J.J., Restrepo-Velez, L.F., Crowley, H.: Development of seismic vulnerability assessment methodologies over the past 30 years. J. Earthquake Technol. paper no 472, 43(3), 75–104 (2006)

    Google Scholar 

  59. Whitman, R.V., Reed, J.W., Hong, S.T.: Earthquake damage probability matrices. In: Procedings of 5th European Conference on Earthquake Engineering, Rome, 25–31, (1973)

    Google Scholar 

  60. Benedetti, D., Sulla, Petrini V.: Vulnerabilità di Edifici in Muratura: Proposta di un Metodo di Valutazione. L’industria delle Costruzioni 149(1), 66–74 (1984)

    Google Scholar 

  61. Lagomarsino, S., Giovinazzi, S.: Macroseismic and mechanical models for the vulnerability and damage assessment of current buildings. Bull. Earthq. Eng. 4, 445–463 (2006)

    Article  Google Scholar 

  62. Spence, R., Coburn, A.W., Pomonis, A.: correlation of ground motion with building damage: the definition of a new damage-based seismic intensity scale. In: Proceedings of the Tenth World Conference on Earthquake Engineering, Madrid, Spain, vol. 1, pp. 551–556 (1992)

    Google Scholar 

  63. Applied Technology Council (ATC): Earthquake damage evaluation data for California, Applied Technology Council, ATC-13. Redwood, California (1985)

    Google Scholar 

  64. Barbat, A.H., Moya, F.Y., Canas, J.A.: Damage scenarios simulation for seismic risk assessment in urban zones. Earthquake Spectra 12(3), 371–394 (1996)

    Article  Google Scholar 

  65. Kappos, A.J., Panagopoulos, G., Panagiotopoulos, C., Penelis, G.: A hybrid method for the vulnerability assessment of R/C and URM buildings. Bull. Earthquake Eng. 4, 391–413 (2006)

    Article  Google Scholar 

  66. Vicente, R., Parodi, S., Lagomarsino, S., Varum, H., Silva, J., Mendes, A.R.: Seismic vulnerability and risk assessment: Case study of the historic city centre of Coimbra, Portugal. Bulletin of Earthquake Engineering, Springer, Manuscript Ref. BEEE325R1, doi 10.1007/s10518-010-9233-3, vol. 9, 1067–1096 (2011)

  67. Giovinazzi, S., Lagomarsino, S.: Fuzzy-Random Approach for a Seismic Vulnerability Model. In: Proceedings of ICOSSAR, Rome, Italy (2005)

    Google Scholar 

  68. Demircioglu, M.B.: Earthquake Hazard and Risk Assessment for Turkey. PhD Thesis. Bogaziçi University, Turkey, (2010)

    Google Scholar 

  69. DEE-KOERI.: Earthquake Risk Assessment for the Istanbul Metropolitan Area. Report prepared by Department of Earthquake Engineering-Kandilli Observatory and Earthquake Research Institute, Bogazici University Press, Istanbul (2003)

    Google Scholar 

  70. Omidvar, B., Gatmini, B., Derakhshan, S.: Experimental vulnerability curves for the residential buildings of Iran. J. Nat. Hazards 60(2), 345–365 (2012)

    Article  Google Scholar 

  71. JICA.: The study on seismic microzoning of the greater Tehran area in the Islamic Republic of Iran, Final report (2000)

    Google Scholar 

  72. Tarque, N., Crowley, H., Varum, H., Pinho, R.: Displacement-based fragility curves for seismic assessment of adobe buildings in Cusco Peru. Earthquake Spectra J. 28(2), 759–794 (2012)

    Article  Google Scholar 

  73. Silva. R.A., Schueremans. L., Oliveira. D.V.: Grouting as a repair/strengthening solution for earth constructions. In: Proceedings of the 1st WTA International PhD Symposium, WTA publications, Leuven, pp. 517–535 (2009)

    Google Scholar 

  74. The Getty Conservation Institute, Pontificia Universidad Católica del Perú: Interdisciplinary Experts Meeting on Grouting Repairs for Large-scale Structural Cracks in Historic Earthen Buildings in Seismic Areas. Peru (2007)

    Google Scholar 

  75. Vargas-Neumann, J., Blondet, M., Ginocchio, F., Morales, K., Iwaki, C.: Uso de grouts de barro líquido para reparar fisuras estructurales en muros históricos de adobe. V Congresso de Tierra en Cuenca de Campos, Valladolid (2008)

    Google Scholar 

  76. NTE E.080: Norma Técnica de Edificación. “Adobe Peruvian Code”. In: Spanish, MTC/SENCICO. Peru (2000)

    Google Scholar 

  77. Blondet, M., Vargas, J., Tarque, N., Iwaki, C.: Seismic resistant earthen construction: the contemporary experience at the Pontificia Universidad Católica del Perú. J. Informes de la Construcción 63(523), 41–50 (2011)

    Article  Google Scholar 

  78. Minke, G.: Manual de construcción para viviendas antisísmicas de tierra. Universidad de Kassel, Alemania (2001)

    Google Scholar 

  79. Ottazzi, G., Yep, J., Blondet, M., Villa-Garcia, G., Ginocchio, J.: Shaking table tests of improved adobe masonry houses. In: Proceedings of Ninth World Conference on Earthquake Engineering. Japan (1988)

    Google Scholar 

  80. Torrealva, D., Acero, J.: Reinforcing adobe buildings with exterior compatible mesh. In SismoAdobe 2005: Architecture, Construction and Conservation of Earthen Buildings in Seismic Areas, Lima, Pontificia Universidad Católica del Perú, Lima, Peru, May 16-19 2005 [CD], ed. Marcial Blondet (2005) http://www.pucp.edu.pe/eventos/ SismoAdobe2005

  81. Vargas-Neumann, J., Torrealva, D., Blondet, M.: Construcción de casas saludables y sismorresistentes de adobe reforzado con geomallas. Fondo Editorial, PUCP (2007)

    Google Scholar 

  82. Oliveira, C., Varum, H., Figueiredo, A., Silveira, D., Costa, A.: Experimental tests for seismic assessment and strengthening of adobe structures. 14th ECEE (2010)

    Google Scholar 

  83. Blondet, M., Aguillar, R.: Seismic Protection of Earthen Buildings. Conferencia Internacional en Ingeniería Sísmica, Peru (2007)

    Google Scholar 

  84. North, G.: Waitakere City Council’s Sustainable Home Guidelines—Earth building; Waitakere City Council. http://www.waitakere.govt.nz/abtcit/ec/bldsus/pdf/materials/earthbuilding.pdf (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humberto Varum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Varum, H. et al. (2014). Structural Behaviour and Retrofitting of Adobe Masonry Buildings. In: Costa, A., Guedes, J., Varum, H. (eds) Structural Rehabilitation of Old Buildings. Building Pathology and Rehabilitation, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39686-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39686-1_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39685-4

  • Online ISBN: 978-3-642-39686-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics