An Integrated Method for Functional Analysis of Microbial Communities by Gene Ontology Based on 16S miRNA Gene

  • Suping Deng
  • Kai Yang
Part of the Communications in Computer and Information Science book series (CCIS, volume 375)


The environment and human serve as elaborate hosts of microbes, including a diversity of commensal and pathogenic bacteria that contribute to both health and diseases. 16S rRNA genes are useful for community profiling, or determining the abundance of each kind of microbe. The purpose of our study is to analyze the similarity among microbial communities on functional state after assigning 16S rRNA sequences from all microbial communities to species. It’s an important addition to the species-level relationship between two compared communities, and can quantify their differences in function. To accomplish this aim, we downloaded all functional annotation data of microbiota from related datasets. It’s developed to identify the functional distribution and the significantly enriched functional categories of microbial communities. Exploration of the function relationship between two sets of species assemblages will be a key result of microbiome studies and may provide new insights into assembly of a wide range of ecosystems.


Microbial community 16s rRNA Gene Ontology enrichment component GO-terms Semantic Similarity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dethlefsen, L., McFall-Ngai, M., Relman, D.A.: An Ecological and Evolutionary Perspective on Human-microbe Mutualism and Disease. Nature 449, 811–818 (2007)CrossRefGoogle Scholar
  2. 2.
    Ley, R.E., Peterson, D.A., Gordon, J.I.: Ecological and Evolutionary Forces Shaping Microbial Diversity in the Human Intestine. Cell 124, 837–848 (2006)CrossRefGoogle Scholar
  3. 3.
    Guarner, F.: Enteric Flora in Health and Disease. Digestion 73, 5–12 (2006)CrossRefGoogle Scholar
  4. 4.
    Brook, I.: The Role of Bacterial Interference in Otitis, Sinusitis and Tonsillitis. Otolaryngol Head Neck Surg 133, 139–146 (2005)CrossRefGoogle Scholar
  5. 5.
    Servin, A.L.: Antagonistic Activities of Lactobacilli and Bifidobacteria Against Microbial Pathogens. FEMS Microbiol Rev. 28, 405–440 (2004)CrossRefGoogle Scholar
  6. 6.
    Reid, G., Bruce, A.W.: Probiotics to Prevent Urinary Tract Infections: the Rationale and Evidence. World J. Urol. 24, 28–32 (2006)CrossRefGoogle Scholar
  7. 7.
    Li, M., Wang, B., Zhang, M., et al.: Symbiotic Gut Microbes Modulate Human Metabolic Phenotypes. Proc. Natl. Acad. Sci. 105, 2117–2122 (2008)CrossRefGoogle Scholar
  8. 8.
    Hooper, L.V.: Bacterial Contributions to Mammalian Gut Development. Trends Microbiol. 12, 129–134 (2004)CrossRefGoogle Scholar
  9. 9.
    Mazmanian, S.K., Liu, C.H., Tzianabos, A.O., Kaspe, R.D.L.: An Immunomo-dulatory Molecule of Symbiotic Bacteria Directs Maturation of the Host Immune System. Cell 122, 107–118 (2005)CrossRefGoogle Scholar
  10. 10.
    Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., et al.: Recognition of Commensal Microflora by Toll-like Receptors is Required for Intestinal Homeostasis. Cell 118, 229–241 (2004)CrossRefGoogle Scholar
  11. 11.
    Nicholson, J.K., Holmes, E., Wilson, I.D.: Gut Microorganisms, Mammalian Metabolism and Personalized Health Care. Nat. Rev. Microbiol. 3, 431–438 (2005)CrossRefGoogle Scholar
  12. 12.
    O’Keefe, S.J., Chung, D., Mahmoud, N., et al.: Why Do African Americans Get More Colon Cancer than Native Africans. J. Nutr. 137,175S–182S (2007)Google Scholar
  13. 13.
    McGarr, S.E., Ridlon, J.M., Hylemon, P.B.: Diet, Anaerobic Bacterial Metabolism, and Colon Cancer: A Review of the Literature. J. Clin. Gastro. enterol. 39, 98–109 (2005)Google Scholar
  14. 14.
    Ley, R.E., Backhed, F., Turnbaugh, P., et al.: Obesity Alters Gut Microbial Ecology. Proc. Natl. Acad. Sci. 102, 11070–11075 (2005)CrossRefGoogle Scholar
  15. 15.
    Backhed, F., Ding, H., Wang, T., et al.: The Gut Microbiota as An Environmental Factor That Regulates Fat Storage. Proc. Natl. Acad. Sci. 101, 15718–15723 (2004)CrossRefGoogle Scholar
  16. 16.
    Stewart, C.S., Duncan, S.H., Cave, D.R.: Oxalobacter Formigenes and Its Role in Oxalate Metabolism in The Human Gut. FEMS Microbiol. Lett. 230, 1–7 (2004)CrossRefGoogle Scholar
  17. 17.
    Zoetendal, E.G., Collier, C.T., Koike, S., et al.: Molecular Ecological Analysis of The Gastrointestinal Microbiota:A Review. J. Nutr. 134, 465–472 (2004)Google Scholar
  18. 18.
    Mai, V., Morris, J.G.: Colonic Bacterial Flora:Changing Understandings in The Molecular Age. J. Nutr. 134, 459–464 (2004)Google Scholar
  19. 19.
    Tringe, S.G., Hugenholtz, P.: A Renaissance for The Pioneering 16S rRNA Gene. Curr. Opin. Microbiol. 11, 442–446 (2008)CrossRefGoogle Scholar
  20. 20.
    Dinsdale, E.A., Edwards, R.A., Hall, D., et al.: Functional Metagenomic Profiling of Nine Biomes. Nature 452, 629–632 (2008)CrossRefGoogle Scholar
  21. 21.
    Pace, N.R.: A Molecular View of Microbial Diversity and The Biosphere. Science 276, 734–740 (1997)CrossRefGoogle Scholar
  22. 22.
    Alexa, A., Rahnenfuhrer, J., Lengauer, T.: Improved Scoring of Functional Groups from Gene Expression Data by Decorrelating GO Graph Structure. Bioinformatics 22, 1600–1607 (2006)CrossRefGoogle Scholar
  23. 23.
    Resnik, P.: Semantic Similarity in A Taxonomy: An Information-Based Measure and Its Application to Problems of Ambiguity in Natural Language. Journal of Artificial Intelligence Research 11, 95–130 (1999)zbMATHGoogle Scholar
  24. 24.
    Jay, J., Jiang, D., Conrath, W.: Semantic Similarity Based on Corpus Statistics and Lexical Taxonomy. In: Proceedings of 10th International Conference on Researc In Computational Linguistics (1997)Google Scholar
  25. 25.
    Dekang, L.: An Information-Theoretic Definition of Similarity. In: Proceedings of the 15th International Conference on Machine Learning, pp. 296–304 (1998)Google Scholar
  26. 26.
    Schlicker, A., Domingues, F.S., Aijhrer, J.R., et al.: A New Measure for Functional Similarity of Gene Products Based on Gene Ontology. BMC Bioinformatics 7, 302 (2006)CrossRefGoogle Scholar
  27. 27.
    Wang, J.Z., Du, Z., Payattakool, R., et al.: A New Method to Measure The Semantic Similarity of GO terms. Bioinformatics 23, 1274–1281 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Suping Deng
    • 1
  • Kai Yang
    • 1
  1. 1.School of Electronics and Information EngineeringTongji UniversityShanghaiP.R. China

Personalised recommendations