Skip to main content

Modeling the Desired Direction in a Force-Based Model for Pedestrian Dynamics

  • Conference paper
  • First Online:
Traffic and Granular Flow '11

Abstract

We introduce an enhanced model based on the generalized centrifugal force model. Furthermore, the desired direction of pedestrians is investigated. A new approach leaning on the well-known concept of static and dynamic floor-fields in cellular automata is presented. Numerical results of the model are presented and compared with empirical data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Helbing D (1991) Behavioral Science, 36:298–310

    Article  Google Scholar 

  2. Helbing D, Molnár P (1995) Phys. Rev. E, 51:4282–4286

    Google Scholar 

  3. Lakoba T I, Kaup D J, Finkelstein N M (2005) Simulation, 81:339–352

    Article  Google Scholar 

  4. Yu W J, Chen L Y, Dong R, Dai S Q (2005) Phys. Rev. E, 72(2):026112

    Google Scholar 

  5. Johansson A, Helbing D, Shukla P K (2007) Adv. in Compl. Sys., 10(2):271–288

    Google Scholar 

  6. Chraibi M, Seyfried A, Schadschneider A (2010) Phys. Rev. E, 82:046111

    Google Scholar 

  7. Steffen B, Seyfried A (2009) Modelling of Pedestrian Movement around 90 and 180 Bends. In Topping B H V, Tsompanakis Y (eds) The First International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering. Civil-Comp Press, Stirlingshire, UK

    Google Scholar 

  8. Gloor C, Mauron L, Nagel K (2003) A pedestrian simulation for hiking in the alps. In Proceedings of the Swiss Transport Research Conference (STRC), Monte Verita, CH

    Google Scholar 

  9. Moussaïd M, Helbing D, Theraulaz G (2011) Proc. Nat. Acad. Sc., 108(17):6884–6888

    Google Scholar 

  10. Höcker M, Berkhahn V, Kneidl A, Borrmann A, Klein W (2010) Graph-based approaches for simulating pedestrian dynamics in building models. In 8th European Conference on Product & Process Modelling (ECPPM), University College Cork, Cork, Ireland

    Google Scholar 

  11. Kemloh Wagoum A U, Seyfried A (2010) Optimizing the evacuation time of pedestrians in a graph-based navigation. In Panda M, Chattararaj U (eds) Developments in Road Transportation, Macmillian Publishers India Ltd

    Google Scholar 

  12. Kretz T, Große A, Hengst S, Kautzsch L, Pohlmann A, Vortisch P (2011) Adv. in Compl. Sys., 14(5):733–759

    Google Scholar 

  13. Molnár P (1995) Modellierung und Simulation der Dynamik von Fußgängerströmen. PhD Thesis, Universität Stuttgart, Stuttgart

    Google Scholar 

  14. Liddle J, Seyfried A, Klingsch W, Rupprecht T, Schadschneider A, Winkens A (2009) An Experimental Study of Pedestrian Congestions: Influence of Bottleneck Width and Length. In Traffic and Granular Flow 2009 (arXiv:0911.4350)

    Google Scholar 

  15. Kretz T (2009) J. Stat Mech.: Theory and Experiment, P03012

    Google Scholar 

  16. Burstedde C, Klauck K, Schadschneider A, Zittartz J (2001) Physica A, 295:507–525

    Article  MATH  Google Scholar 

  17. Nishinari K, Kirchner A, Namazi A, Schadschneider A (2004) IEICE Transactions, 87-D(3):726–732

    Google Scholar 

  18. Kretz T, Schreckenberg M (2006) The F.A.S.T.-Model. In Lect. Notes Comp. Sc., 4173:712–715, Springer Berlin/Heidelberg

    Google Scholar 

Download references

Acknowledgements

This work is within the framework of two projects. The authors are grateful to the Deutsche Forschungsgemeinschaft (DFG) for funding the project under Grant-No. SE 1789/1-1 as well as the Federal Ministry of Education and Research (BMBF) for funding the project under Grant-No. 13N9952 and 13N9960.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohcine Chraibi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chraibi, M., Freialdenhoven, M., Schadschneider, A., Seyfried, A. (2013). Modeling the Desired Direction in a Force-Based Model for Pedestrian Dynamics. In: Kozlov, V., Buslaev, A., Bugaev, A., Yashina, M., Schadschneider, A., Schreckenberg, M. (eds) Traffic and Granular Flow '11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39669-4_25

Download citation

Publish with us

Policies and ethics