Skip to main content

Geodesics and Shortest Paths Approach in Pedestrian Motions

  • Conference paper
  • First Online:

Abstract

We revisit existing ideas on the eikonal equation and combine them with a discrete Lagrangian description. Some preliminary numerical tests are reported.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R.L. Hughes, A continuum theory for the flow of pedestrians. Transportation Research, Part B, 36, 507–535 (2002).

    Google Scholar 

  2. R. L. Hughes. The flow of human crowds. Annual Review of Fluid Mechanics,. 35:169–182, (2003).

    Google Scholar 

  3. Lawrence C. Evans, Partial differential equations. Graduate studies in mathematics, 19, American Mathematical Soc. (2010).

    Google Scholar 

  4. Ph. Hoch, M. Rascle, Hamilton-Jacobi Equations on a Manifold and Applications to Grid Generation or Refinement, SIAM J. Sc. Comp., 23, 6, (2002).

    Google Scholar 

  5. J.A. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision and Materials Science, Cambridge University Press, (1999).

    Google Scholar 

  6. R. Abgrall. Numerical discretization of boundary conditions for first order Hamilton–Jacobi equations. SIAM J. Numer. Anal., 41(6):2233–2261, (2003).

    Google Scholar 

  7. Y. Xia, S.C. Wong and C.-W. Shu, Dynamic continuum pedestrian flow model with memory effect, Physical Review E, v79 (2009).

    Google Scholar 

  8. D. Helbing, Traffic and related self-driven many-particle systems, Reviews of Modern Physics 73, 1067–1141 (2001).

    Google Scholar 

  9. S. Osher, J.A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comp.. Phys. 79 (1988).

    Google Scholar 

  10. M. Crandall and P. L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277, 1–42 (1983).

    Google Scholar 

  11. B. Maury, A. Roudneff-Chupin, F. Santambrogio, J. Venel, Handling congestion in crowd motion models Networks and Heterogenous Media, 485–519 (2011).

    Google Scholar 

  12. F. Decoupigny, Mobilités potentielles et émergence de structures réticulaires en région Provence-Alpes-Côte d’Azur,L’Espace géographique 38/3 (2009).

    Google Scholar 

  13. T. Kretz, C. Bönisch, and P. Vortisch, Comparison of various methods for the calculation of the distance potential field, In Pedestrian and Evacuation Dynamics 2008. Springer Berlin Heidelberg New York, 2009.

    Google Scholar 

  14. D. Hartmann. Adaptive pedestrian dynamics based on geodesics. New Journal of Physics, 12(4): 043032, 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Nkonga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nkonga, B., Rascle, M., Decoupigny, F., Maignant, G. (2013). Geodesics and Shortest Paths Approach in Pedestrian Motions. In: Kozlov, V., Buslaev, A., Bugaev, A., Yashina, M., Schadschneider, A., Schreckenberg, M. (eds) Traffic and Granular Flow '11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39669-4_24

Download citation

Publish with us

Policies and ethics