Space-Time Variability of Summer Temperature Field over Bangladesh during 1948-2007

  • Avit Kumar Bhowmik
  • Pedro Cabral
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7974)


Climatic variability analysis is an emerging scientific issue for South-Asian regions, where recent climate change has imposed substantial challenges. In this paper, we analyzed the spatiotemporal variability of the yearly maximum temperature (TXx), which characterizes the summer in Bangladesh, sampled at 34 meteorological stations during 1948-2007. We identified monotonic and robust temporal trends of TXx by each station and examined the spatial pattern of TXx from interpolated surfaces in each year. We quantified the variability of TXx over space and time and indentified temporal trends in the regional mean and interpolated TXx. In contrast to the existing studies, our results depicted an overall decreasing trend in the regional TXx. A regional shift of the summer was observed due to the decreasing and increasing TXx in the warmer northern and the cooler southern regions, respectively. We discussed the relevance of our findings to the future climate change impacts on this region.


Spatiotemporal Variability Climate Spatial Interpolation Trend Climatic Shift 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Intergovermental Panel on Climate Change (IPCC): Climate Change 2001: Impacts, Adaptation and Vulnerability. In: Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (2001)Google Scholar
  2. 2.
    Intergovermental Panel on Climate Change (IPCC): Climate Change 2007: Impacts, Adaptation and Vulnerability. In: Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E. (eds.) Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, p. 976. Cambridge University Press, Cambridge (2007)Google Scholar
  3. 3.
    Alexander, L.V., Hope, P., Collins, D., Trewin, B., Lynch, A., Nicholls, N.: Trends in Australia’s climate means and extremes: a global context. Australian Meteorological Magazine 56, 1–18 (2007)Google Scholar
  4. 4.
    Hulme, M., Osborn, T.J., Johns, T.C.: Precipitation sensitivity to global warming: comparison of observations with HADCM2 simulations. Geophy. Res. Lett. 25, 3379–3382 (1998)CrossRefGoogle Scholar
  5. 5.
    Lambert, F., Stott, P., Allen, M.: Detection and attribution of changes in global terrestrial precipitation. Geophys. Res. Abs. 5, 06140 (2003)Google Scholar
  6. 6.
    Tarhule, S., Woo, M.: Changes in rainfall characteristics in northern Nigeria. International Journal of Climatology 18, 1261–1272 (1998)CrossRefGoogle Scholar
  7. 7.
    Haylock, M., Nicholls, N.: Trends in extreme rainfall indices for an updated high quality data set for Australia, 1910–1998. International Journal of Climatology 20, 1533–1541 (2000)CrossRefGoogle Scholar
  8. 8.
    Griffiths, G.M., Salinger, M.J., Leleu, I.: Trends in extreme daily rainfall across the South Pacific and relationship to the South Pacific convergence zone. International Journal of Climatology 23, 847–869 (2003)CrossRefGoogle Scholar
  9. 9.
    Osbom, T.J., Hulme, M., Jones, P.D., Basnett, T.A.: Observed trends in the daily intensity of United Kingdom precipitation. International Journal of Climatology 20, 347–364 (2000)CrossRefGoogle Scholar
  10. 10.
    Roy, S.S., Balling, R.C.: Trends in extreme daily rainfall indices in India. International Journal of Climatology 24, 457–466 (2004)CrossRefGoogle Scholar
  11. 11.
    Chou, Y.H.: Exploring Spatial Analysis in Geographic Information Systems. On Word Press, Santa Fe (1997)Google Scholar
  12. 12.
    Isaaks, E.H., Srivastava, R.M.: An Introduction to Applied Geostatistics. Oxford University Press, New York (1989)Google Scholar
  13. 13.
    Journel, A.G., Huijbregts, C.J.: Mining Geostatistics. Academic Press, New York (1978)Google Scholar
  14. 14.
    Davison, A.C., Hinkley, D.V.: Bootstrap Methods and Their Application. Cambridge University Press, Cambridge (1997)zbMATHCrossRefGoogle Scholar
  15. 15.
    Hipel, K.W., McLeod, A.I.: Time Series Modelling of Water Resources and Environmental Systems. Elsevier, Amsterdam (2005)Google Scholar
  16. 16.
    Goovaerts, P.: Ordinary cokriging revisited. Mathematical Geology 30, 21–42 (1998)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Phillips, D.L., Dolph, J., Marks, D.: A comparison of geostatistical procedures for spatial analysis of precipitations in mountainous terrain. Agriculture and Forest Meteorology 58, 119–141 (1992)CrossRefGoogle Scholar
  18. 18.
    Tabios, G.Q., Salas, J.D.: A comparative analysis of techniques for spatial interpolation of precipitation. Water Resources Bulletin 21, 365–380 (1985)CrossRefGoogle Scholar
  19. 19.
    Zhang, X., Vincent, L.A., Hogg, W.D., Niitsoo, A.: Temperature and Precipitation Trends in Canada during the 20th Century. Atmosphere-Ocean 38(3), 395–429 (2000)CrossRefGoogle Scholar
  20. 20.
    Wang, X.L., Swail, V.R.: Changes in extreme wave heights in northern hemisphere oceans and related atmospheric circulation regimes. Journal of Climate 14, 2204–2221 (2001)CrossRefGoogle Scholar
  21. 21.
    Braun, D.: Bangladesh, India, Most Threatened by Climate Change, Risk Study Finds. National Geographic (2010)Google Scholar
  22. 22.
    Cai, Y., Weihong, Q., Song, Y., Zhengmin, L.: Regional features of precipitation over Asia and summer extreme precipitation over Southeast Asia and their associations with atmospheric–oceanic conditions. Meteorology and Atmospheric Physics 106, 57–73 (2010)CrossRefGoogle Scholar
  23. 23.
    Parthasarathy, B., Sontake, N.A., Monot, A.A., Kothawale, D.R.: Drought-flood in the summer monsoon season over different meteorological subdivisions of India for the period 1871-1984. Journal of Climatology 7, 57–70 (1987)CrossRefGoogle Scholar
  24. 24.
    Klein, T.A.M.G., Peterson, T.C., Quadir, D.A.: Changes in daily temperature and precipitation extremes in central and south Asia. Journal of Geophysical Research 111, D16, D16105 (2006)Google Scholar
  25. 25.
    Chowdhury, M.H.K., Debsharma, S.K.: Climate change in Bangladesh – A statistical review. Report on the IOC-UNEP Workshop on the Impacts of Sea Level Rise due to Global Warming. NOAMI (1992)Google Scholar
  26. 26.
    Hussain, A.M., Sultana, N.: Rainfall distribution over Bangladesh stations during the monsoon months in the absence of depressions and cyclonic storms. Mausam 47, 339–348 (1996)Google Scholar
  27. 27.
    Karmakar, S., Shrestha, M.L.: Recent climate change in Bangladesh. In: Proceedings of SAARC Meteorological Research Center vol. (4) (2000)Google Scholar
  28. 28.
    Mia, N.M.: Variations of temperature of Bangladesh. In: Proceedings of SAARC Seminars on Climate Variability in the South Asian Region and its Impacts. SMRC, Dhaka (2003)Google Scholar
  29. 29.
    Shahid, S.: Spatio-Temporal Variability of Rainfall over Bangladesh during the Time Period 1969-2003. Asia-Pacific Journal of Atmospheric Science 45, 375–389 (2009)Google Scholar
  30. 30.
    Shahid, S.: Trends in extreme rainfall events of Bangladesh. Theoretical and Applied Climatology 104, 489–499 (2010)CrossRefGoogle Scholar
  31. 31.
    Bhowmik, A.K.: A Comparison of Bangladesh Climate Surfaces from the Geostatistical Point of View. ISRN Meteorology 2012, 353408 (2012)CrossRefGoogle Scholar
  32. 32.
    Bhowmik, A.K., Cabral, P.: Statistical Evaluation of Spatial Interpolation Methods for Small-Sampled Region: A Case Study of Temperature Change Phenomenon in Bangladesh. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011, Part I. LNCS, vol. 6782, pp. 44–59. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  33. 33.
    Bhowmik, A.K., Costa, A.C.: A Geostatistical Approach to the Seasonal Precipitation Effect on Boro Rice Production in Bangladesh. International Journal of Geosciences 3, 443–462 (2012)CrossRefGoogle Scholar
  34. 34.
    Bhowmik, A.K.: Temporal Patterns of the Two-dimensional Spatial Trends in Summer Temperature and Monsoon Precipitation of. ISRN Atmospheric Sciences (in press, 2013)Google Scholar
  35. 35.
    Bangladesh Bureau of Statistics (BBS): Statistical Pocket Book Bangladesh (2009)Google Scholar
  36. 36.
    Disaster Management Information Center (DMIC) of Comprehensive Disaster Management Program (CDMP): Bangladesh Meteorological Department,
  37. 37.
    Yue, S., Pilon, P., Phinney, B., Cavadias, G.: The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrological Processes 16, 1807–1829 (2002)CrossRefGoogle Scholar
  38. 38.
    Peterson, T.C., Folland, C., Gruza, G., Hogg, W., Mokssit, A., Plummer, N.: Report on the activities of the Working Group on Climate Change Detection and Related Rapporteurs 1998–2001. Report WCDMP-47, WMO-TD 1071, World Meteorological Organization, Geneva (2001)Google Scholar
  39. 39.
    Plummer, N., Salinger, M.J., Nicholls, N., Suppiah, R., Hennessy, K.J., Leighton, R.M., Trewin, B., Page, C.M., Lough, J.M.: Changes in climate extremes over the Australian region and New Zealand during the twentieth century. In: Karl, T.R., Nicholls, N., Ghazi, A. (eds.) Weather and Climate Extremes: Changes, Variations and a Perspective from the Insurance Industry, pp. 183–202. Kluwer Academic Publishers (1999)Google Scholar
  40. 40.
    Ministry of Environment and Forests Government of the People’s Republic of Bangladesh (MEF): Bangladesh Climate Change Strategy and Action Plan (2008)Google Scholar
  41. 41.
    The World Bank (WB), Bangladesh: Economics of Adaptation to Climate Change Study,
  42. 42.
    Zhang, X., Yang, F.: RClimDex (1.0) User Guide. Climate Research Branch Environment Canada. Downsview, Ontario (2004)Google Scholar
  43. 43.
    R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna,
  44. 44.
    Mann, H.B.: Nonparametric tests against trend. Econometrica 13, 245–259 (1945)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Kendall, M., Gibbons, J.D.: Rank Correlation Methods. Griffin (1990)Google Scholar
  46. 46.
    Sen, P.K.: Estimates of the regression coefficient based on Kendall’s tau. J. Amer. Stat. Assoc. 63, 1379–1389 (1968)zbMATHCrossRefGoogle Scholar
  47. 47.
    Yue, S., Pilon, P., Cavadias, G.: Power of the Mann-Kendall and Spearman’s Rho tests for detecting monotonic trends in hydrologic series. J. Hydrol. 259, 254–271 (2002)CrossRefGoogle Scholar
  48. 48.
    McLeod, A.I.: Kendall: Kendall rank correlation and Mann-Kendall trend test,
  49. 49.
    Bronaugh, D.: zyp: Zhang + Yue-Pilon trends package,
  50. 50.
    Christakos, G.: Modern Spatiotemporal Geostatistics. Oxford University Press (2001)Google Scholar
  51. 51.
    Hancock, P.A., Hutchinson, M.F.: Spatial interpolation of large climate data sets using bivariate thin plate smoothing splines. Environmental Modelling & Software 21(2006), 1684–1694 (2005)Google Scholar
  52. 52.
    Wahba, G.: Spline models for observational data. In: CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (1990)Google Scholar
  53. 53.
    Furrer, R., Nychka, D., Sain, S.: fields: Tools for spatial data,
  54. 54.
    Chiles, J., Delfiner, P.: Geostatistics: modeling spatial uncertainty. John Wiley & Sons, New York (1999)zbMATHCrossRefGoogle Scholar
  55. 55.
    Willmott, C.J.: On the evaluation of model performance in physical geography. In: Gaile, G.L., Willmott, C.J. (eds.) Spatial Statistics and Models, pp. 443–460 (1984)Google Scholar
  56. 56.
    Searlsa, D.T.: The Utilization of a Known Coefficient of Variation in the Estimation Procedure. Journal of the American Statistical Association 59(308), 1225–1226 (1964)CrossRefGoogle Scholar
  57. 57.
    Basistha, A., Goel, N.K., Arya, D.S., Gangwar, S.K.: Spatial pattern of trends in Indian sub-divisional rainfall. Jalvigyan Sameeksha 22, 47–57 (2007)Google Scholar
  58. 58.
    Yue, S., Hashino, M.: Long term trends of annual and monthly precipitation in Japan. J. Amer. Water Resour. Assoc. 39, 587–596 (2003)CrossRefGoogle Scholar
  59. 59.
    Radziejewski, M., Kundzewicz, Z.W.: Detectability of changes in hydrological records. Hydro. Sci. J. 49, 39–51 (2004)CrossRefGoogle Scholar
  60. 60.
    Singh, O.P.: Cause-effect relationships between sea surface temperature, precipitation and sea level along the Bangladesh coast. Theoretical and Applied Climatology 68, 233–243 (2001)CrossRefGoogle Scholar
  61. 61.
    Jones, P.D.: Maximum and minimum temperature trends in Ireland, Italy, Thailand, Turkey and Bangladesh. Atmospheric Research 37, 67–78 (1995)CrossRefGoogle Scholar
  62. 62.
    Bhowmik, A., Cabral, P.: Cyclone Sidr Impacts on the Sundarbans Floristic Diversity. Earth Science Research 2(2), 62–79 (2013)CrossRefGoogle Scholar
  63. 63.
    Mirza, M.M.Q.: Global warming and changes in the probability of occurrence of floods in Bangladesh and implications. Global Environmental Change 12, 127–138 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Avit Kumar Bhowmik
    • 1
  • Pedro Cabral
    • 2
  1. 1.Institute for Environmental Sciences, Quantitative Landscape EcologyUniversity of Koblenz-LandauLandau in der PfalzGermany
  2. 2.Instituto Superior de Estatística e Gestão de Informação, ISEGIUniversidade Nova de LisboaLisboaPortugal

Personalised recommendations