3D-VUPID: 3D Visual Urban Planning Integrated Data

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7974)


Urban information for urban planning is usually represented in the form of statistics, indicators, and indexes which can be visualized in graphics, maps, Geographic Information Systems (GIS), 3D images, and simulations. Cities use urban information portfolios for planning purposes but, unfortunately, these are usually represented separately and visualized in independent tools. This leads to complex and time-consuming information management requirements and data redundancies. To the best of our knowledge, there have never been any attempts to represent and visualize the urban information portfolio of a city in a single or unitary piece of software. Our proposal is a tool – 3D-VUPID - which integrates information representation and visualization in urban planning. The tool is designed to converge, organize, and map all urban information related to the urban planning activity in a common framework and to depict it in a simple, understandable way. Additionally, 3D-VUPID provides customized updates and gathers available open data and mobile internet anonymous data.


Urban Data representation Urban Data visualization Urban Planning Urban Statistics Urban Indicators Urban Indices 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexander, C., Smith-Voysey, S., Jarvis, C., Tansey, K.: Integrating building footprints and LiDAR elevation data to classify roof structures and visualise buildings. Computers Environment and Urban Systems 33(4), 285–292 (2009)zbMATHCrossRefGoogle Scholar
  2. 2.
    Yiakoumettis, C.P., Bardis, G., Miaoulis, G., Plemenos, D., Ghazanfarpour, D.: A GIS Platform for Automatic Navigation into Georeferenced Scenes Using GIS Scene Explorer (GIS-SE). In: Plemenos, D., Miaoulis, G. (eds.) Intelligent Computer Graphics 2010. SCI, vol. 321, pp. 105–122. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Hetherington, R., Farrimond, B., Clynch, P.: Embodying and extracting data in Web3D models of proposed building developments. In: Banissi, E., Sarfraz, M., Dejdumrong, N. (eds.) Computer Graphics, Imaging and Visualisation: New Advances. International Conference on Computer Graphics Imaging and Visualization, vol. 1, pp. 528–533 (2007)Google Scholar
  4. 4.
    Wang, H., Song, Y., Hamilton, A., Curwell, S.: Urban information integration for advanced e-Planning in Europe. Government Information Quarterly 24(4), 736–754 (2007)CrossRefGoogle Scholar
  5. 5.
    Williams, P., Siekierska, E., Armenakis, C., Savopol, F., Siegel, C., Webster, J.: Visualization and Hypermedia for Decision Making, Geographic Hypermedia: Concepts and Systems. In: Stefanakis, E., Peterson, M., Armenakis, C., Delis, V. (eds.) Lecture Notes in Geoinformation and Cartography, vol. 1, pp. 309–328 (2006)Google Scholar
  6. 6.
    Petrovic, D.: Three-dimensional (thematic) maps in spatial planning. Geodetski Vestnik 51(2), 293–303 (2007)MathSciNetGoogle Scholar
  7. 7.
    El-Mezouar, M.C., Taleb, N., Kpalma, K., Ronsin, J.: A high-resolution index for vegetation extraction in IKONOS images, Remote Sensing for Agriculture, Ecosystems, and Hydrology. In: Neale, C., Maltese, A. (eds.) Proceedings of SPIE-The International Society for Optical Engineering, vol. 7824, Art. Num. 78242a (2010)Google Scholar
  8. 8.
    Moller, M.: New remote sensing systems and GIS-Techniques for the monitoring of urban ecological processes. In: Ehlers, M. (ed.) Remote Sensing for Environmental Monitoring, GIS Applications, and Geology, Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), vol. 4545, pp. 109–117 (2002)Google Scholar
  9. 9.
    Calijuri, M.L., Marques, E., Meira, A., Maia, F., Bhering, E.: Digital land-use cartography-the example of Vicosa. Engineering Geology 63(1-2), 1–16 (2002)CrossRefGoogle Scholar
  10. 10.
    Mardaljevic, J., Rylatt, M.: Irradiation mapping of complex urban environments: an image-based Approach. Energy and Buildings 35(1), 27–35 (2003)CrossRefGoogle Scholar
  11. 11.
    Wolff, M., Asche, H.: Geospatial Crime Scene Investigation – From Hotspot Analysis to Interactive 3D Visualization. In: Gervasi, O., Taniar, D., Murgante, B., Laganà, A., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2009, Part I. LNCS, vol. 5592, pp. 285–299. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Brennan-Horley, C.: Mental mapping the ‘creative city’. Journal of Maps, 250–259 (2010)Google Scholar
  13. 13.
    Pinnel, L.D., Dockrey, M., Brush, A., Borning, A.: Design of visualizations for urban modelling. In: DeLeeuw, W., VanLiere, R. (eds.) Data Visualization 2000, vol. 1, pp. 199–208. Springer Computer Science (2000)Google Scholar
  14. 14.
    Zhou, G.Q., Tan, Z.Y., Cen, M.Y., Li, C.K.: Customizing visualization in three-dimensional urban GIS via web-based interaction. Journal of Urban Planning and Development-ASCE 132(2), 97–103 (2006)CrossRefGoogle Scholar
  15. 15.
    Kim, S.S., Lee, S.H., Choe, S.K., Lee, J.H.: Component based 3D GIS software design for the Urban Planning, Management Information Systems 2002: Incorporating GIS and Remote Sensing. In: Brebbia, C., Pascolo, P. (eds.) Management Information Systems, vol. 4, pp. 205–214 (2002)Google Scholar
  16. 16.
    Lai, P.C., Kwong, K.H., Mak, A.: Assessing the applicability and effectiveness of 3D visualization in environmental impact assessment. Environment and Planning B-Planning & Design 37(2), 221–233 (2010)CrossRefGoogle Scholar
  17. 17.
    Dong, C.H., Hu, J.P., Wang, L.: Application of a Virtual Geosciences Modelling System in Digital City. In: Luo, Q. (ed.) Construction, Information Technology for Manufacturing Systems, vol. 1(2), pp. 1311–1314 (2010)Google Scholar
  18. 18.
    Serrao, R.S., Paiva, A.C.: Architecture based on Virtual Reality techniques and geographic data base for storage and visualization of urban virtual models. In: Coors, V., Rumor, M., Fendel, E., Zlatanova, S. (eds.) Urban and Regional Data Management. Proceedings and Monographs in Engineering, Water and Earth Sciences, vol. 1, pp. 201–210 (2008)Google Scholar
  19. 19.
    Yao, J.L., Fernando, T., Tawfik, H., Armtiage, R., Billing, I.: VR-centred workspace for supporting collaborative urban planning. In: Shen, W., James, A., Chao, K.M., Younas, M., Lin, Z., Barthes, J.P. (eds.) Proceedings of the Ninth International Conference on Computer Supported Cooperative Work in Design, vol. 1(2), pp. 564–569 (2005)Google Scholar
  20. 20.
    Lange, E.: The limits of realism: perceptions of virtual landscapes. Landscape and Urban Planning 54(1-4), 163–182 (2001)CrossRefGoogle Scholar
  21. 21.
    Birkin, M., Malleson, H., Hudson-Smith, A., Gray, S., Milton, R.: Calibration of a spatial simulation model with volunteered geographical information. International Journal of Geographical Information science 25(8), 1221–1239 (2011)CrossRefGoogle Scholar
  22. 22.
    Schmidt, M., Schafer, R., Nokel, K.: SIMTRAP: Simulation of traffic-induced air pollution. Transactions of the Society for Computer Simulation International 15(3), 122–132 (1998)Google Scholar
  23. 23.
    White, S., Feiner, S.: SiteLens: Situated Visualization Techniques for Urban Site Visits. In: Greenberg, S., Hudson, S.E., Hinkley, K., Ringel-Morris, M., Olsen, D.R. (eds.) CHI 2009: Proceedings of the 27th Annual CHI Conference on Human Factors in Computing Systems, vol. 1(4), pp. 1117–1120 (2009)Google Scholar
  24. 24.
    Bogorny, V., Avancini, H., de Paula, B.C., Kuplich, C.R., Alvares, L.O.: Weka-STPM: a Software Architecture and Prototype for Semantic Trajectory Data Mining and Visualization. Transactions in GIS 15(2), 227–248 (2011)CrossRefGoogle Scholar
  25. 25.
    Chittaro, L., Ranon, R., Ieronutti, L.: VU-flow: A visualization tool for analyzing navigation in virtual Environments. IEEE Transactions on Visualization and Computer Graphics 12(6), 1475–1485 (2006)CrossRefGoogle Scholar
  26. 26.
    Zheng, J., Shi, M.: Mapping cityscapes into cyberspace for visualization. Computer Animation and Virtual Worlds 16(2), 97–107 (2005)CrossRefGoogle Scholar
  27. 27.
    Ibrahim, N., Noor, N.: Navigation technique in 3D information visualization. In: TENCON 2004. IEEE Region 10 Conference, Proceedings: Analog and Digital Techniques in Electrical Engineering, vol. A(D), pp. B379–B382 (2004)Google Scholar
  28. 28.
    Yao, J., Tawfik, H., Fernando, T.: A GIS based virtual urban simulation environment. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3993, pp. 60–68. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  29. 29.
    Hoekstra, R., Winkels, R., Hupkes, E.: Spatial Planning on the Semantic Web. Transactions in GIS 14(2), 147–161 (2010)CrossRefGoogle Scholar
  30. 30.
    Wu, H., He, Z., Gong, Y.: A virtual globe-based 3D visualization and interactive framework for public participation in urban planning processes. Computers Environment and Urban Systems 34(4), 291–298 (2010)CrossRefGoogle Scholar
  31. 31.
    Coors, V., Jasnoch, U., Jung, V.: Using the Virtual Table as an interaction platform for collaborative urban Planning. Computers & Graphics-UK 23(4), 487–496 (1999)CrossRefGoogle Scholar
  32. 32.
    Coutinho, M., Neches, R., Bugacov, A., Kumar, V., Yao, K., Ko, Y., Eleish, R., Abhinkar, S.: GeoWorlds: A geographically based situation understanding and information management system for disaster relief Operations. In: Callaos, N., Nada, N., Cherif, A., Aveledo, M. (eds.) World Multiconference on Systemics, Cybernetics and Informatics, vol. 1, pp. 133–136 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Architecture and Urban PlanningUniversity of GironaGironaSpain
  2. 2.Graphics and Imaging LaboratoryUniversity of GironaGironaSpain

Personalised recommendations