The Representation for All Model: An Agent-Based Collaborative Method for More Meaningful Citizen Participation in Urban Planning

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7973)


Our Model is designed to greatly increase public participation in urban planning and make it more citizen-friendly. We use an agent technology consisting of a pair of opinion-miner recommender agents which, through mining of the opinions of citizens, make recommendations to planners on the design of the master plan. The advantages of using recommender agent technology in our DSS Model are that it accelerates acceptance of planning proposals and creates more participatory urban planning. A particularly innovative feature of our Model is that public participation occurs both before and during the development of the master plan, and in a citizen-friendly way. With our Model, planners come up with citizen-sensitive proposals and are able to more accurately predict the reaction of citizens to them. The case of the redesign of the Diagonal Avenue in Barcelona is provided as a concluding example.


decision support system urban planning public participation opinion-miner recommender agents 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gordon, E., Schirra, S., Hollander, J.: Immersive planning: a conceptual model for designing public participation with new technologies. Environment and Planning B-Planning & Design 38, 505–519 (2011)CrossRefGoogle Scholar
  2. 2.
    Bugs, G., Granell, C., Fonts, O., Huerta, J., Painho, M.: An assessment of Public Participation GIS and Web 2.0 technologies in urban planning practice in Canela, Brazil. Cities 27(3), 172–181 (2010)CrossRefGoogle Scholar
  3. 3.
    Brabham, D.: Crowdsourcing the Public Participation Process for Planning Projects. Planning Theory 8(3), 242–262 (2009)CrossRefGoogle Scholar
  4. 4.
    Dai, C., Li, T.: Research on the Application of Virtual Reality Technology in the Large-scale Public Construction Planning Dynamic Analysis, Editor(s): China Civil Eng. Soc., Chinese Acad. of Eng./DCHAE; Tongji Univ., China State Construction Eng. Co. Ltd. Proceedings of Shanghai Intl. Conf. on Tech. of Architecture and Structure, 580–586 (2009)Google Scholar
  5. 5.
    Bogdahn, J., Coors, V., Sachdeva, V.: A 3D tool for public participation in urban planning. In: Coors, V., Rumor, M., Fendel, E., Zlatanova, S. (eds.) Urban and Regional Data Management. Procs. and Monographs in Eng., Water and Earth Sciences, pp. 231–236 (2008)Google Scholar
  6. 6.
    Howard, T.L.J., Gaborit, N.: Using virtual environment tech. to improve public participation in urban planning process. J. Urban Planning and Dev., ASCE 133(4), 233–241 (2007)CrossRefGoogle Scholar
  7. 7.
    Dzitac, I., Moisil, I.: Advanced AI Techniques for Web Mining. In: Mastorakis, N.E., Poulos, M., Mladenov, V., Bojkovic, Z., Simian, D., Kartalopoulos, S. (eds.) Mathematical Methods, Computational Techniques, Non-linear Systems, Intelligent Systems. Mathematics and Computers in Science and Engineering, pp. 343–346 (2008)Google Scholar
  8. 8.
    Ligtenberg, A., Bregt, A., Van Lammeren, R.: Multi-actor-based land use modelling: spatial planning using agents. Landscape and Urban Planning 56, 21–33 (2001)CrossRefGoogle Scholar
  9. 9.
    Ligtenberg, A., Beulens, A., Kettenis, D., Bregt, A., Wachowicz, M.: Simulating knowledge sharing in spatial planning: An agent-based approach. Environment and Planning B-Planning & Design 36, 644–663 (2009)CrossRefGoogle Scholar
  10. 10.
    Kou, X., Yang, L., Cai, L.: Artificial Urban Planning: Application of MAS in Urban Planning Education. In: 2008 Intl. Symp. on Computational Intelligence and Design, vol. 2, pp. 349–353 (2008)Google Scholar
  11. 11.
    Wagner, R.: On the metric, topological and functional structures of urban networks. Physical-statistical Mechanics and its Applications 387(2008), 2120–2132 (2008)CrossRefGoogle Scholar
  12. 12.
    Chen, J., Jiang, J., Yeh, A.: Designing a GIS-based CSCW system for dev. control with an event-driven approach. Photogrammetric Eng. and Remote Sensing 70, 225–233 (2004)Google Scholar
  13. 13.
    Li, X., Liu, X.P.: Embedding sustainable development strategies in agent-based models for use as a planning tool. Intl. Journal of Geographical Information Science 22, 21–45 (2008)zbMATHCrossRefGoogle Scholar
  14. 14.
    Batty, M.: Cities and Complexity: Understanding Cities with Cellular Automata, Agent-Based Models, and Fractals. The MIT Press (2007)Google Scholar
  15. 15.
    Aschwanden, G., Haegler, S., Bosche, F., Van Gool, L., Schmitt, G.: Empiric design evaluation in urban planning. Automation in Construction 20, 299–310 (2011)CrossRefGoogle Scholar
  16. 16.
    Dijkstra, J., Timmermans, H.: Towards a multi-agent model for visualizing simulated user behavior to support the assessment of design performance. Automation in Construction 11, 135–145 (2002)CrossRefGoogle Scholar
  17. 17.
    Steinhöfel, J., Anders, F., Köhler, H., Kalisch, D., König, R.: Computer-Based Methods for a Socially Sustainable Urban and Regional Planning – CoMStaR. In: Taniar, D., Gervasi, O., Murgante, B., Pardede, E., Apduhan, B.O. (eds.) ICCSA 2010, Part I. LNCS, vol. 6016, pp. 152–165. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Arentze, T.A., Borgers, A., Ma, L.D., Timmermans, H.: An agent-based heuristic method for generating land-use plans in urban planning. Environment and Planning B-Planning & Design 37, 463–482 (2010)CrossRefGoogle Scholar
  19. 19.
    Casali, A., Godo, L., Sierra, C.: Validation and Experimentation of a Tourism Recommender Agent based on a Graded BDI Model. In: Alsinet, T., PuyolGruart, J., Torras, C. (eds.) AI Research and Dev. Frontiers in Artificial Intelligence and Applications, vol. 3, pp. 41–50 (2008)Google Scholar
  20. 20.
    Yang, H.-L., Yang, H.-F.: Recommender agent based on social network. In: Okuno, H.G., Ali, M. (eds.) IEA/AIE 2007. LNCS (LNAI), vol. 4570, pp. 943–952. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Haubl, G., Murray, K.: Double agents. MIT SLOAN Management Review 47 (2006)Google Scholar
  22. 22.
    Rosaci, D., Sarne, G.: Dynamically Computing Reputation of Recommender Agents with Learning Capabilities. In: Badica, C., Mangioni, G., Carchiolo, V., Burdescu, D.D. (eds.) Intel. Distributed Comput., Systems & Appl. SCI, vol. 162, pp. 299–304. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Zaiane, O.: Building a recommender agent for e-learning systems. In: Kinshuk, X., Lewis, R., Akahori, K., Kemp, R., Okamoto, T., Henderson, L., Lee, C.H. (eds.) Proceedings of International Conference on Computers in Education (I –II), pp. 55–59 (2002)Google Scholar
  24. 24.
    Cristian Mihǎescu, M., Burdescu, D.D., Ionascu, C.M., Logofatu, B.: Intelligent Educational System Based on Personal Agents. In: Damiani, E., Jeong, J., Howlett, R.J., Jain, L.C. (eds.) New Directions in Intelligent Interactive Multimedia Systems and Services - 2. SCI, vol. 226, pp. 545–554. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  25. 25.
    Karoui, H., Kanawati, R., Petrucci, L.: COBRAS: Cooperative CBR system for bibliographical reference recommendation. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) ECCBR 2006. LNCS (LNAI), vol. 4106, pp. 76–90. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  26. 26.
    Garruzzo, S., Rosaci, D., Sarné, G.M.L.: MARS: An agent-based recommender system for the semantic web. In: Indulska, J., Raymond, K. (eds.) DAIS 2007. LNCS, vol. 4531, pp. 181–194. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  27. 27.
    Takenouchi, T., Kawamura, T., Ohsuga, A.: Development of knowledge-filtering agent along with user context in ubiquitous environment. In: Enokido, T., Yan, L., Xiao, B., Kim, D.Y., Dai, Y.-S., Yang, L.T. (eds.) EUC-WS 2005. LNCS, vol. 3823, pp. 71–80. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  28. 28.
    Montaner, M., Lopez, B., de la Rosa, J.: A taxonomy of recommender agents on the Internet. Artificial Intelligence Review 19, 285–330 (2003)CrossRefGoogle Scholar
  29. 29.
    Kim, J.H., Kwon, H.J., Hong, K.S.: Location awareness-based intelligent multi-agent technology. Multimedia Systems 16, 275–292 (2010)CrossRefGoogle Scholar
  30. 30.
    Lee, C.S., Wang, M.H., Hagras, H.A.: Type-2 Fuzzy Ontology and its Application to Personal Diabetic-Diet Recommendation. IEICE Trans. on Info. and Systems 18, 374–395 (2010)Google Scholar
  31. 31.
    McCarey, F., O’Cinneide, M., Kushmerick, N.: A recommender agent for software libraries: An evaluation of memory-based and model-based collaborative filtering. In: Nishida, T., et al. (eds.) 2006 IEEE/WIC/ACM Intl Conf. on Intelligent Agent Technology (2006), pp. 154–162 (2006)Google Scholar
  32. 32.
    Kantardzic, M.: Data Mining: Concepts, Models, Methods, and Algorithms. John Wiley & Sons, New Jersey (2003)zbMATHGoogle Scholar
  33. 33.
    Liu, B.: Web Data Mining. Exploring Hyperlinks, Contents, and Usage Data. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  34. 34.
    Lau, R.: Belief revision for adaptive recommender agents in E-commerce. In: Liu, J., Cheung, Y.-M., Yin, H. (eds.) IDEAL 2003. LNCS, vol. 2690, pp. 99–103. Springer, Heidelberg (2003)Google Scholar
  35. 35.
    Kusumura, Y., Hijikata, Y., Nishida, S.: NTM-Agent: Text mining agent for net auction. IEICE Transactions on Information and Systems E87D, 1386–1396 (2004)Google Scholar
  36. 36.
    Blanke, T., Hedges, M., Palmer, R.: Restful services for the e-Humanities - web services that work for the e-Humanities ecosystem. In: 3rd IEEE International Conference on Digital Ecosystems and Technologies, pp. 290–295 (2009)Google Scholar
  37. 37.
    Chiang, J.H., Chen, Y.C.: An intelligent news recommender agent for filtering and categorizing large volumes of text corpus. Intl J. of Intelligent Systems 19, 201–216 (2004)zbMATHCrossRefGoogle Scholar
  38. 38.
    Aciar, S., Zhang, D., Simoff, S., Debenham, J.: Informed recommender agent: Utilizing consumer product reviews through text mining. In: Butz, C.J., et al. (eds.) IEEE/WIC/ACM Intl Conf. on Web Intelligence and Agent Technology, pp. 37–40 (2006)Google Scholar
  39. 39.
    Papagelis, M., Plexousakis, D.: Qualitative analysis of user-based and item-based prediction algorithms for recommendation agents. Eng. Applications of AI 18, 781–789 (2005)Google Scholar
  40. 40.
    Smeureanu, I., Diosteanu, A., Delcea, C., Cotfas, L.: Business Ontology for Evaluating Corporate Social Responsibility. Amfiteatru Economic 13, 28–42 (2011)Google Scholar
  41. 41.
    Herlocker, J., Konstan, J.A., Terveen, L., Riedl, J.: Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems (TOIS) 22 (2004)Google Scholar
  42. 42.
    Sarwar, B., Karypis, G., Konstan, J., Reidl, J.: Item-based coll. filtering recommendation algorithms. In: 10th Intl. Conf. on World Wide Web, pp. 285–295. ACM Press, NY (2001)Google Scholar
  43. 43.
    Pazzani, M.: A framework for collaborative, content-based and demographic filtering. Artificial Intelligence Review 13, 393–408 (1999)CrossRefGoogle Scholar
  44. 44.
    Kobsa, A., Koenemann, J., Pohl, W.: Personalized hypermedia presentation techniques for improving online customer relationships. The Knowledge Eng. Review 16, 111–155 (2001)zbMATHCrossRefGoogle Scholar
  45. 45.
    Krulwich, B.: Lifestyle finder: intelligent user profiling using large-scale demographic data. Artificial Intelligence Magazine 18, 37–45 (1997)Google Scholar
  46. 46.
    Wang, Z., Liu, A.: Toward Intelligent Web Collaborative Learning System. In: Hu, Z.B., Liu, Q.T. (eds.) Proceedings of the First International Workshop on Education Technology and Computer Science III, pp. 467–471 (2009)Google Scholar
  47. 47.
    Lele, N., Wu, L., Akavipat, R., Menczer, F.: 2.0 peer application for collaborative web search. In: Conference on Hypertext and Hypermedia archive, Proceedings of the 20th ACM Conference on Hypertext and Hypermedia Table of Contents, pp. 333–334 (2009)Google Scholar
  48. 48.
    Trias, A., Mansilla, J., de la Rosa, J.L.L.: Asknext: An Agent Protocol for Social Search. Information Sciences 190, 144–161 (2012)CrossRefGoogle Scholar
  49. 49.
    Smyth, B., Briggs, P., Coyle, M., O’Mahony, M.: Google Shared. A Case-Study in Social Search. In: Houben, G.-J., McCalla, G., Pianesi, F., Zancanaro, M. (eds.) UMAP 2009. LNCS, vol. 5535, pp. 283–294. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  50. 50.
    Yu, B., Singh, M.P., Sycara, K.: Developing Trust in Large-Scale Peer-to-Peer Systems. In: First IEEE Symposium on Multi-Agent Security and Survivability, pp. 1–10 (2004)Google Scholar
  51. 51.
    Kassoff, M., Petrie, C., Zen, L.M., Genesereth, M.: Semantic Email Addressing, The Semantic Web Killer App? IEEE Internet Computing, 30–37 (2009)Google Scholar
  52. 52.
  53. 53.
    Dublin Municipality. Railway Procurement Agency,
  54. 54.
  55. 55.

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Architecture and Urban PlanningUniversity of GironaGironaSpain
  2. 2.TECNIO Centre EASYUniversity of GironaGironaSpain

Personalised recommendations