Skip to main content

Automated Extraction of Community Mobility Measures from GPS Stream Data Using Temporal DBSCAN

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 7972)

Abstract

Inferring community mobility of patients from GPS data has received much attention in health research. Developing robust mobility (or physical activity) monitoring systems relies on the automated algorithm that classifies GPS track points into events (such as stops where activities are conducted, and routes taken) accurately. This paper describes the method that automatically extracts community mobility measures from GPS track data. The method uses temporal DBSCAN in classifying track points, and temporal filtering in removing noises (any misclassified track points). The result shows that the proposed method classifies track points with 88% accuracy. The percent of misclassified track points decreased significantly with our method (1.9%) over trip/stop detection based on attribute threshold values (10.58%).

Keywords

  • GPS track data
  • DBSCAN
  • trip detection
  • community mobility

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-39643-4_7
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-39643-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Evans, C.C., Hanke, T.A., Zielke, D., Keller, S., Ruroede, K.: Monitoring community mobility with Global Positioning System technology after a stroke: a case study. J. Neurol. Phys. Ther. 36(2), 68–78 (2012)

    Google Scholar 

  2. Schenk, A.K., Witbrodt, B.C., Hoarty, C.A., Carlson Jr., R.H., Goulding, E.H., Potter, J.F., Bonasera, S.J.: Cellular telephones measure activity and lifespace in community-dwelling adults: proof of principle. J. Am. Geriatr. Soc. 59(2), 345–352 (2011)

    CrossRef  Google Scholar 

  3. Rainham, D., Krewski, D., McDowell, I., Sawada, M., Liekens, B.: Development of a wearable global positioning system for place and health research. Int. J. Health Geogr. 7(1), 59–75 (2008)

    CrossRef  Google Scholar 

  4. Tudor-Lock, C.: Assessment of enacted mobility in older adults. Top. Geriatr. Rehabil. 28(1), 33–38 (2012)

    Google Scholar 

  5. Srinivasan, S., Bricka, S., Bhat, C.: Methodology for converting GPS navigational streams to the travel-diary data format (2009), http://www.ce.utexas.edu/prof/bhat/ABSTRACTS/Srinivasan_Bricka_Bhat.pdf

  6. Schuessler, N., Axhausen, K.W.: Processing raw data from global positioning systems without additional information. Transp. Res. Record 2105, 28–36 (2009)

    CrossRef  Google Scholar 

  7. Berke, E.M.: Geographic information systems (GIS): recognizing the importance of place in primary care research and practice. J. Am. Board Fam. Med. 23(1), 9–12 (2010)

    CrossRef  Google Scholar 

  8. Peel, C., Baker, P.S., Roth, D.L., Brown, C.J., Bodner, E.V., Allman, R.M.: Assessing mobility in older adults: the UAB Study of Aging Life-Space Assessment. Phys. Ther. 85(10), 1008–1019 (2005)

    Google Scholar 

  9. Stopher, P., FitzGerald, C., Xu, M.: Assessing the accuracy of the Sydney Household Travel Survey with GPS. Transportation 34(6), 723–741 (2007)

    CrossRef  Google Scholar 

  10. Liao, L., Fox, D., Kautz, H.: Extracting places and activities from GPS traces using hierarchical conditional random fields. Int. J. Robot. Res. 26(1), 119–134 (2007)

    CrossRef  Google Scholar 

  11. Liao, L., Patterson, D.J., Fox, D., Kautz, H.: Building personal maps from GPS data. Ann. N. Y. Acad. Sci. 1093(1), 249–265 (2007)

    CrossRef  Google Scholar 

  12. Schoier, G., Borruso, G.: Individual movements and geographical data mining: clustering algorithms for highlighting hotspots in personal navigation routes. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011, Part I. LNCS, vol. 6782, pp. 454–465. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  13. Carlos, H.A., Shi, X., Sargent, J., Tanski, S., Berke, E.M.: Density estimation and adaptive bandwidths: a primer for public health practitioners. Int. J. Health Geogr. 9(1), 39–46 (2010)

    CrossRef  Google Scholar 

  14. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, KDD 1996, pp. 226–231. AAAI Press (1996)

    Google Scholar 

  15. Stenneth, L., Wolfson, O., Yu, P.S., Xu, B.: Transportation mode detection using mobile phones and GIS information. In: Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACMGIS 2011), pp. 54–63. ACM (2011)

    Google Scholar 

  16. Cho, G.H., Rodriguez, D.A., Evenson, K.R.: Identifying walking trips using GPS data. Med. Sci. Sports Exerc. 43(2), 365–372 (2011)

    CrossRef  Google Scholar 

  17. Gonzalez, P., Weinstein, J., Barbeau, S., Labrador, M., Winters, P., Georggi, N.L., Perez, R.: Automating mode detection using neural networks and assisted GPS data collected using GPS-enabled mobile phones. In: 15th World Congress on Intelligent Transportation Systems (2008)

    Google Scholar 

  18. Liao, B.: Anomaly detection in GPS data based on visual analytics. In: IEEE Symposium on Visual Analytics Science and Technology (2010)

    Google Scholar 

  19. Mavoa, S., Oliver, M., Witten, K., Badland, H.: Linking GPS and travel diary data using sequence alignment in a study of children’s independent mobility. Int. J. Health Geogr. 10(1), 64 (2011)

    CrossRef  Google Scholar 

  20. Eagle, N., Pentland, A.: Reality mining: sensing complex social systems. Pers. Ubiquit. Comput. 10(4), 255–268 (2006)

    CrossRef  Google Scholar 

  21. Pentland, A., Lazer, D., Brewer, D., Heibeck, T.: Using reality mining to improve public health and medicine. Stud. Health Technol. Inform. 149, 93–102 (2009)

    Google Scholar 

  22. Betts, K.S.: Characterizing exposomes: tools for measuring personal environmental exposures. Environ. Health Persp. 120(4), a158 (2012)

    Google Scholar 

  23. Richardson, D.B., Volkow, N.D., Kwan, M.P., Kaplan, R.M., Goodchild, M.F., Croyle, R.T.: Spatial turn in health research. Science 339(6126), 1390–1392 (2013)

    CrossRef  Google Scholar 

  24. Duncan, M.J., Badland, H.M., Mummery, W.K.: Applying GPS to enhance understanding of transport-related physical activity. J. Sci. Med. Sport 12(5), 549–556 (2009)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hwang, S., Hanke, T., Evans, C. (2013). Automated Extraction of Community Mobility Measures from GPS Stream Data Using Temporal DBSCAN. In: , et al. Computational Science and Its Applications – ICCSA 2013. ICCSA 2013. Lecture Notes in Computer Science, vol 7972. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39643-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39643-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39642-7

  • Online ISBN: 978-3-642-39643-4

  • eBook Packages: Computer ScienceComputer Science (R0)