Skip to main content

Contribution of Model-Driven Engineering to Crop Modeling

  • Conference paper
Computational Science and Its Applications – ICCSA 2013 (ICCSA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7971))

Included in the following conference series:

Abstract

This work was initiated to tackle issues met by the ITK Company in developing and designing new crop models for decision support systems. At the crossroads of two disciplines, Computer Science and Agronomy, we propose the use of Model-Driven Engineering which has the potential to be the future of software engineering. This paper presents the model-driven approach retained to achieve a full-fledge crop modeling and simulation environment. The metamodel and graphical concrete syntax designed are overcoming the lack of formal tool for conceptual modeling. The presented prototype permits to improve ITK production process through the use of code generation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bouman, B.A.M., Van Keulen, H., van Laar, H.H., Rabbinge, R.: The ‘School of de Wit’ crop growth simulation models: a pedigree and historical review. Agricultural Systems 52(2/3), 171–198 (1996)

    Article  Google Scholar 

  2. Gauthier, L., Gary, C., Zekki, H.: GPSF: A Generic and Object-Oriented Framework for Crop Simulation. Ecological Modelling 116(2-3), 253–268 (1999)

    Article  Google Scholar 

  3. McCown, R.L., Hammer, G.L., Hargreaves, J.N.G., Holzworth, D.P., Freebairn, D.M.: APSIM: A Novel Software System for Model Development, Model Testing and Simulation in Agricultural Systems Research. Agricultural Systems 50, 255–271 (1996)

    Article  Google Scholar 

  4. Jones, J.W., Hoogenboom, G., Porter, C.H., Boote, K., Batchelor, W.D., Hunt, L.A., Wilkens, P.W., Singh, U., Gijsman, A.J., Ritchie, J.T.: The DSSAT Cropping System Model. European Journal of Agronomy 18, 235–265 (2003)

    Article  Google Scholar 

  5. Fournier, C., Pradal, C., Louarn, G., Combes, D., Soulié, J.-C., Luquet, D., Boudon, F., Chelle, M.: Building modular FSPM under OpenAlea: concepts and applications. In: 6th International Workshop on Functional-Structural Plant Models, pp. 109–112. University of California, Davis (2010)

    Google Scholar 

  6. de Lara, J., Vangheluwe, H.: AToM3: A Tool for Multi-formalism and Meta-modelling. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306, pp. 174–188. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Touraille, L., Traoré, M.K., Hill, D.R.C.: A Model-driven Software Environment for Modeling, Simulation and Analysis of Complex Systems. In: Spring Simulation Multiconference - Symposium on Theory of Modeling and Simulation (TMS/DEVS), Boston, USA, pp. 229–237 (2011)

    Google Scholar 

  8. Lawless, C., Semenov, M.A., Jamieson, P.D.: A wheat canopy model linking leaf area and phenology. European Journal of Agronomy 22, 19–32 (2005)

    Article  Google Scholar 

  9. Hakojarvi, M., Hautala, M., Ahokas, J., Oksanen, T., Maksimow, T., Aspiala, A., Visala, A.: Platform for simulation of automated crop production. Agronomy Research 8(1), 797–806 (2010)

    Google Scholar 

  10. Robinson, S.: Editorial. The Future’s Bright the Future’s... Conceptual Modelling for Simulation! Journal of Simulation 1, 149–152 (2007)

    Article  Google Scholar 

  11. Kelly, S., Tolvanen, J.-P.: Domain-Specific Modeling: Enabling Full Code Generation, 448 p. Wiley - IEEE Computer Society Press (2008)

    Google Scholar 

  12. Muller, P.-A., Fleurey, F., Jézéquel, J.-M.: Executability into Object-Oriented Meta-Languages. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, pp. 264–278. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Hemel, Z., Kats, L.C.L., Visser, E.: Code generation by model transformation: a case study in transformation modularity. Software and Systems Modeling 9, 183–198 (2008)

    Google Scholar 

  14. Greenfield, J., Short, K.: Software Factories Assembling Applications with Patterns, Models, Frameworks and Tools. In: OOPSLA 2003, Anaheim, Canada, pp. 16–27 (2003)

    Google Scholar 

  15. Bézivin, J.: On the Unification Power of Models. Software and Systems Modeling 4(2), 171–188 (2005)

    Article  Google Scholar 

  16. Favre, J.M.: Foundations of Model (Driven) (Reverse) Engineering: Models – Episode I: Stories of the Fidus Papyrus and of the Solarius. In: Proceedings of Dagsthul Seminar on Model-Driven Reverse Engineering, pp. 1–30 (2004)

    Google Scholar 

  17. Favre, J.M.: Foundations of Meta-Pyramids: Languages and Metamodels - Episode II: Story of Thotus the Baboon. Post-Proceedings of Dagsthul Seminar on Model Driven Reverse Engineering, pp. 1–28 (2004)

    Google Scholar 

  18. Selic, B.: The Pragmatics of Model-Driven Development. IEEE Software 20(5), 19–25 (2003)

    Article  Google Scholar 

  19. Mens, T., Van Gorp, P.: A Taxonomy of Model Transformation. Electronic Notes in Theoretical Computer Science 152, 125–142 (2006)

    Article  Google Scholar 

  20. Gate, P.: Ecophysiologie du blé. Lavoisier, 429 p. (1995)

    Google Scholar 

  21. Jamieson, P.D., Semenov, M.A., Brooking, I.R., Francis, G.S.: Sirius: A Mechanistic Model of Wheat Response to Environmental Variation. European Journal of Agronomy 8, 161–179 (1998)

    Article  Google Scholar 

  22. Brisson, N., Perrier, A.: A semiempirical model of bare soil evaporation for crop simulation models. Water Resources Research 27(5), 719–727 (1991)

    Article  Google Scholar 

  23. Louarn, G.: Analyse et Modélisation de l’Organogénèse et de l’Architecture d’un Rameau de Vigne (Vitis vinifiera L.). Montpellier, Ecole nationale supérieure agronomique de Montpellier. PhD, 198 p. (2009)

    Google Scholar 

  24. Jallas, E.: Improved Model-Based Decision Support by Modeling Cotton Variability and using Evolutionary Algorithms. Mississippi, Mississippi State University. PhD, 239 p. (1998)

    Google Scholar 

  25. Vos, J., Evers, J.B., Buck-Sorlin, G.H., Andrieu, B., Chelle, M., de Visser, P.H.B.: Functional-Structural Plant Modelling: A New Versatile Tool in Crop Science. Journal of Experimental Botany 61(8), 2101–2115 (2010)

    Article  Google Scholar 

  26. Brisson, N., Ripoche, D., Jeuffroy, M.H., Ruget, F., Nicoullaud, B., Gate, P., Devienne-Barret, F., Antoniotelli, R., Durr, C., Richard, G., Beaudoin, N., Recous, S., Tayot, X., Plenet, D., Cellier, P., Machet, J.M., Meynard, J.M., Delecolle, R.: STICS: A Generic Model for the Simulation of Crops and their Water and Nitrogen Balance. Agronomie 18, 311–346 (1998)

    Article  Google Scholar 

  27. Barbier, G., Pinet, F., Hill, D.R.C.: MDE in Action: First Steps towards a Crop Model Factory. In: Proceedings of the ESM 2011 European Simulation and Modeling Conference, Guimarães, Portugal, pp. 130–137 (2011)

    Google Scholar 

  28. Favre, J.M., Bézivin, J., Bull, I.: Evolution, rétro-ingénierie et IDM: du code aux modèles". In: L’ingénierie dirigée par les modèles - Au-delà du MDA, Hermes science, Lavoisier édition, pp. 185–215 (2006)

    Google Scholar 

  29. Barbier, G., Flusin, J., Cucchi, V., Pinet, F., Hill, D.R.C.: Vine Model Design using a Domain-Specific Modeling Language. Prototype and Proof of Concept. In: Proceedings of the ESM 2012 European Simulation and Modelling Conference, Essen, Germany, M. Klumpp, pp. 100–106 (2012)

    Google Scholar 

  30. Gamma, E., Helm, R., Vlissides, J.: Design Patterns: Elements of Reusable Object-Oriented Software, 403 p. Addison-Wesley (1995)

    Google Scholar 

  31. Kolovos, D.S., Rose, L.M., Abid, S.B., Paige, R.F., Polack, F.A.C., Botterweck, G.: Taming EMF and GMF Using Model Transformation. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394, pp. 211–225. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  32. Barbier, G., Cucchi, V., Pinet, F., Hill, D.R.C.: CMF: A Crop Model Factory to Improve Scientific Models Development Process. In: Progressions and Innovations in Model-Driven Software Engineering, 16 p. IGI Global (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barbier, G., Cucchi, V., Hill, D.R.C. (2013). Contribution of Model-Driven Engineering to Crop Modeling. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2013. ICCSA 2013. Lecture Notes in Computer Science, vol 7971. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39637-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39637-3_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39636-6

  • Online ISBN: 978-3-642-39637-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics