Skip to main content

Scalable LCF-Style Proof Translation

  • Conference paper
Interactive Theorem Proving (ITP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7998))

Included in the following conference series:

Abstract

All existing translations between proof assistants have been notoriously sluggy, resource-demanding, and do not scale to large developments, which has lead to the general perception that the whole approach is probably not practical. We aim to show that the observed inefficiencies are not inherent, but merely a deficiency of the existing implementations. We do so by providing a new implementation of a theory import from HOL Light to Isabelle/HOL, which achieves decent performance and scalability mostly by avoiding the mistakes of the past. After some preprocessing, our tool can import large HOL Light developments faster than HOL Light processes them. Our main target and motivation is the Flyspeck development, which can be imported in a few hours on commodity hardware. We also provide mappings for most basic types present in the developments including lists, integers and real numbers. This papers outlines some design considerations and presents a few of our extensive measurements, which reveal interesting insights in the low-level structure of larger proof developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adams, M.: Introducing HOL Zero - (extended abstract). In: Fukuda, K., van der Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 142–143. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Chaieb, A., Nipkow, T.: Proof synthesis and reflection for linear arithmetic. J. Autom. Reasoning 41(1), 33–59 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hales, T.C., Harrison, J., McLaughlin, S., Nipkow, T., Obua, S., Zumkeller, R.: A revision of the proof of the Kepler conjecture. Discrete & Computational Geometry 44(1), 1–34 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Harrison, J.: Automating elementary number-theoretic proofs using Gröbner bases. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 51–66. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Harrison, J., Zumkeller, R.: update_database module. Part of the HOLLight distribution

    Google Scholar 

  6. Hurd, J.: The OpenTheory standard theory library. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 177–191. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Kaliszyk, C., Urban, J.: Initial experiments with external provers and premise selection on HOL Light corpora. In: Fontaine, P., Schmidt, R., Schulz, S. (eds.) PAAR (to appear 2012)

    Google Scholar 

  8. Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Flyspeck. CoRR, abs/1211.7012 (2012)

    Google Scholar 

  9. Kaufmann, M., Paulson, L.C. (eds.): ITP 2010. LNCS, vol. 6172. Springer, Heidelberg (2010)

    MATH  Google Scholar 

  10. Keller, C., Werner, B.: Importing HOL Light into Coq. In: Kaufmann and Paulson [9], pp. 307–322

    Google Scholar 

  11. Krauss, A., Schropp, A.: A mechanized translation from higher-order logic to set theory. In: Kaufmann and Paulson [9], pp. 323–338

    Google Scholar 

  12. Obua, S., Skalberg, S.: Importing HOL into Isabelle/HOL. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 298–302. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Weigend, J., Siedersleben, J., Adersberger, J.: Dynamische Analyse mit dem Software-EKG. Informatik Spektrum 34(5), 484–495 (2011)

    Article  Google Scholar 

  14. Freek Wiedijk. Formalizing 100 theorems, http://www.cs.ru.nl/~freek/100/

  15. Wong, W.: Recording and checking HOL proofs. In: Schubert, E.T., Windley, P.J., Alves-Foss, J. (eds.) HUG 1995. LNCS, vol. 971, pp. 353–368. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kaliszyk, C., Krauss, A. (2013). Scalable LCF-Style Proof Translation. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds) Interactive Theorem Proving. ITP 2013. Lecture Notes in Computer Science, vol 7998. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39634-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39634-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39633-5

  • Online ISBN: 978-3-642-39634-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics