Abstract
All existing translations between proof assistants have been notoriously sluggy, resource-demanding, and do not scale to large developments, which has lead to the general perception that the whole approach is probably not practical. We aim to show that the observed inefficiencies are not inherent, but merely a deficiency of the existing implementations. We do so by providing a new implementation of a theory import from HOL Light to Isabelle/HOL, which achieves decent performance and scalability mostly by avoiding the mistakes of the past. After some preprocessing, our tool can import large HOL Light developments faster than HOL Light processes them. Our main target and motivation is the Flyspeck development, which can be imported in a few hours on commodity hardware. We also provide mappings for most basic types present in the developments including lists, integers and real numbers. This papers outlines some design considerations and presents a few of our extensive measurements, which reveal interesting insights in the low-level structure of larger proof developments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adams, M.: Introducing HOL Zero - (extended abstract). In: Fukuda, K., van der Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 142–143. Springer, Heidelberg (2010)
Chaieb, A., Nipkow, T.: Proof synthesis and reflection for linear arithmetic. J. Autom. Reasoning 41(1), 33–59 (2008)
Hales, T.C., Harrison, J., McLaughlin, S., Nipkow, T., Obua, S., Zumkeller, R.: A revision of the proof of the Kepler conjecture. Discrete & Computational Geometry 44(1), 1–34 (2010)
Harrison, J.: Automating elementary number-theoretic proofs using Gröbner bases. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 51–66. Springer, Heidelberg (2007)
Harrison, J., Zumkeller, R.: update_database module. Part of the HOLLight distribution
Hurd, J.: The OpenTheory standard theory library. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 177–191. Springer, Heidelberg (2011)
Kaliszyk, C., Urban, J.: Initial experiments with external provers and premise selection on HOL Light corpora. In: Fontaine, P., Schmidt, R., Schulz, S. (eds.) PAAR (to appear 2012)
Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Flyspeck. CoRR, abs/1211.7012 (2012)
Kaufmann, M., Paulson, L.C. (eds.): ITP 2010. LNCS, vol. 6172. Springer, Heidelberg (2010)
Keller, C., Werner, B.: Importing HOL Light into Coq. In: Kaufmann and Paulson [9], pp. 307–322
Krauss, A., Schropp, A.: A mechanized translation from higher-order logic to set theory. In: Kaufmann and Paulson [9], pp. 323–338
Obua, S., Skalberg, S.: Importing HOL into Isabelle/HOL. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 298–302. Springer, Heidelberg (2006)
Weigend, J., Siedersleben, J., Adersberger, J.: Dynamische Analyse mit dem Software-EKG. Informatik Spektrum 34(5), 484–495 (2011)
Freek Wiedijk. Formalizing 100 theorems, http://www.cs.ru.nl/~freek/100/
Wong, W.: Recording and checking HOL proofs. In: Schubert, E.T., Windley, P.J., Alves-Foss, J. (eds.) HUG 1995. LNCS, vol. 971, pp. 353–368. Springer, Heidelberg (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kaliszyk, C., Krauss, A. (2013). Scalable LCF-Style Proof Translation. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds) Interactive Theorem Proving. ITP 2013. Lecture Notes in Computer Science, vol 7998. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39634-2_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-39634-2_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39633-5
Online ISBN: 978-3-642-39634-2
eBook Packages: Computer ScienceComputer Science (R0)