Steps towards Verified Implementations of HOL Light

  • Magnus O. Myreen
  • Scott Owens
  • Ramana Kumar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7998)


This short paper describes our plans and progress towards construction of verified ML implementations of HOL Light: the first formally proved soundness result for an LCF-style prover. Building on Harrison’s formalisation of the HOL Light logic and our previous work on proof-producing synthesis of ML, we have produced verified implementations of each of HOL Light’s kernel functions. What remains is extending Harrison’s soundness proof and proving that ML’s module system provides the required abstraction for soundness of the kernel to relate to the entire theorem prover. The proofs described in this paper involve the HOL Light and HOL4 theorem provers and the OpenTheory toolchain.


Inference Rule Theorem Prover Synthesis Tool Interactive Proof String Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Harrison, J.: HOL Light: An overview. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 60–66. Springer, Heidelberg (2009), CrossRefGoogle Scholar
  2. 2.
    Harrison, J.: Towards self-verification of HOL Light. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 177–191. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Hurd, J.: The OpenTheory standard theory library. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 177–191. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Myreen, M.O., Davis, J.: The reflective Milawa theorem prover is sound (2012),
  5. 5.
    Myreen, M.O., Owens, S.: Proof-producing synthesis of ML from higher-order logic. In: Thiemann, P., Findler, R.B. (eds.) International Conference on Functional Programming (ICFP). ACM (2012)Google Scholar
  6. 6.
    Owens, S.: A sound semantics for OCaml light. In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 1–15. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Wiedijk, F.: Stateless HOL. In: Hirschowitz, T. (ed.) Types for Proofs and Programs (TYPES). EPTCS (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Magnus O. Myreen
    • 1
  • Scott Owens
    • 2
  • Ramana Kumar
    • 1
  1. 1.Computer LaboratoryUniversity of CambridgeUK
  2. 2.School of ComputingUniversity of KentUK

Personalised recommendations