Skip to main content

The Picard Algorithm for Ordinary Differential Equations in Coq

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 7998)

Abstract

Ordinary Differential Equations (ODEs) are ubiquitous in physical applications of mathematics. The Picard-Lindelöf theorem is the first fundamental theorem in the theory of ODEs. It allows one to solve differential equations numerically. We provide a constructive development of the Picard-Lindelöf theorem which includes a program together with sufficient conditions for its correctness. The proof/program is written in the Coq proof assistant and uses the implementation of efficient real numbers from the CoRN library and the MathClasses library. Our proof makes heavy use of operators and functionals, functions on spaces of functions. This is faithful to the usual mathematical description, but a novel level of abstraction for certified exact real computation.

Keywords

  • Coq
  • Exact real computation
  • Ordinary Differential Equations
  • Constructive mathematics
  • Type classes

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-39634-2_34
  • Chapter length: 6 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   64.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-39634-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   84.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cruz-Filipe, L., Geuvers, H., Wiedijk, F.: C-CoRN, the Constructive Coq Repository at Nijmegen. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS, vol. 3119, pp. 88–103. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  2. Spitters, B., van der Weegen, E.: Type classes for mathematics in type theory. MSCS, Special Issue on “Interactive Theorem Proving and the Formalization of Mathematics” 21, 1–31 (2011)

    Google Scholar 

  3. Krebbers, R., Spitters, B.: Type classes for efficient exact real arithmetic in Coq. LMCS 9(1:1) (2013), doi:10.2168/LMCS-9(1:01)2013

    Google Scholar 

  4. O’Connor, R.: Certified Exact Transcendental Real Number Computation in Coq. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 246–261. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  5. Gonthier, G., Ziliani, B., Nanevski, A., Dreyer, D.: How to make ad hoc proof automation less ad hoc. In: ICFP, pp. 163–175 (2011)

    Google Scholar 

  6. O’Connor, R., Spitters, B.: A computer verified, monadic, functional implementation of the integral. TCS 411, 3386–3402 (2010)

    CrossRef  MathSciNet  MATH  Google Scholar 

  7. Bridger, M.: Real analysis, a constructive approach. Pure and Applied Mathematics (New York). Wiley (2007)

    Google Scholar 

  8. Julien, N., Paşca, I.: Formal Verification of Exact Computations Using Newton’s Method. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 408–423. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  9. Coquand, T., Spitters, B.: A constructive proof of Simpson’s rule. Logic and Analysis 4(15), 1–8 (2012)

    MathSciNet  Google Scholar 

  10. Boespflug, M., Dénès, M., Grégoire, B.: Full reduction at full throttle. In: Jouannaud, J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 362–377. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  11. Immler, F., Hölzl, J.: Numerical analysis of ordinary differential equations in Isabelle/HOL. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 377–392. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  12. Boldo, S., Clément, F., Filliâtre, J.-C., Mayero, M., Melquiond, G., Weis, P.: Formal proof of a wave equation resolution scheme: the method error. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 147–162. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  13. Boldo, S., Clément, F., Filliâtre, J., Mayero, M., Melquiond, G., Weis, P.: Wave equation numerical resolution: a comprehensive mechanized proof of a C program. Journal of Automated Reasoning, 1–34 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Makarov, E., Spitters, B. (2013). The Picard Algorithm for Ordinary Differential Equations in Coq. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds) Interactive Theorem Proving. ITP 2013. Lecture Notes in Computer Science, vol 7998. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39634-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39634-2_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39633-5

  • Online ISBN: 978-3-642-39634-2

  • eBook Packages: Computer ScienceComputer Science (R0)