Abstract
Ordinary Differential Equations (ODEs) are ubiquitous in physical applications of mathematics. The Picard-Lindelöf theorem is the first fundamental theorem in the theory of ODEs. It allows one to solve differential equations numerically. We provide a constructive development of the Picard-Lindelöf theorem which includes a program together with sufficient conditions for its correctness. The proof/program is written in the Coq proof assistant and uses the implementation of efficient real numbers from the CoRN library and the MathClasses library. Our proof makes heavy use of operators and functionals, functions on spaces of functions. This is faithful to the usual mathematical description, but a novel level of abstraction for certified exact real computation.
Keywords
- Coq
- Exact real computation
- Ordinary Differential Equations
- Constructive mathematics
- Type classes
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Cruz-Filipe, L., Geuvers, H., Wiedijk, F.: C-CoRN, the Constructive Coq Repository at Nijmegen. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS, vol. 3119, pp. 88–103. Springer, Heidelberg (2004)
Spitters, B., van der Weegen, E.: Type classes for mathematics in type theory. MSCS, Special Issue on “Interactive Theorem Proving and the Formalization of Mathematics” 21, 1–31 (2011)
Krebbers, R., Spitters, B.: Type classes for efficient exact real arithmetic in Coq. LMCS 9(1:1) (2013), doi:10.2168/LMCS-9(1:01)2013
O’Connor, R.: Certified Exact Transcendental Real Number Computation in Coq. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 246–261. Springer, Heidelberg (2008)
Gonthier, G., Ziliani, B., Nanevski, A., Dreyer, D.: How to make ad hoc proof automation less ad hoc. In: ICFP, pp. 163–175 (2011)
O’Connor, R., Spitters, B.: A computer verified, monadic, functional implementation of the integral. TCS 411, 3386–3402 (2010)
Bridger, M.: Real analysis, a constructive approach. Pure and Applied Mathematics (New York). Wiley (2007)
Julien, N., Paşca, I.: Formal Verification of Exact Computations Using Newton’s Method. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 408–423. Springer, Heidelberg (2009)
Coquand, T., Spitters, B.: A constructive proof of Simpson’s rule. Logic and Analysis 4(15), 1–8 (2012)
Boespflug, M., Dénès, M., Grégoire, B.: Full reduction at full throttle. In: Jouannaud, J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 362–377. Springer, Heidelberg (2011)
Immler, F., Hölzl, J.: Numerical analysis of ordinary differential equations in Isabelle/HOL. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 377–392. Springer, Heidelberg (2012)
Boldo, S., Clément, F., Filliâtre, J.-C., Mayero, M., Melquiond, G., Weis, P.: Formal proof of a wave equation resolution scheme: the method error. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 147–162. Springer, Heidelberg (2010)
Boldo, S., Clément, F., Filliâtre, J., Mayero, M., Melquiond, G., Weis, P.: Wave equation numerical resolution: a comprehensive mechanized proof of a C program. Journal of Automated Reasoning, 1–34 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Makarov, E., Spitters, B. (2013). The Picard Algorithm for Ordinary Differential Equations in Coq. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds) Interactive Theorem Proving. ITP 2013. Lecture Notes in Computer Science, vol 7998. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39634-2_34
Download citation
DOI: https://doi.org/10.1007/978-3-642-39634-2_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39633-5
Online ISBN: 978-3-642-39634-2
eBook Packages: Computer ScienceComputer Science (R0)