Skip to main content

The Picard Algorithm for Ordinary Differential Equations in Coq

  • Conference paper
Interactive Theorem Proving (ITP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7998))

Included in the following conference series:

Abstract

Ordinary Differential Equations (ODEs) are ubiquitous in physical applications of mathematics. The Picard-Lindelöf theorem is the first fundamental theorem in the theory of ODEs. It allows one to solve differential equations numerically. We provide a constructive development of the Picard-Lindelöf theorem which includes a program together with sufficient conditions for its correctness. The proof/program is written in the Coq proof assistant and uses the implementation of efficient real numbers from the CoRN library and the MathClasses library. Our proof makes heavy use of operators and functionals, functions on spaces of functions. This is faithful to the usual mathematical description, but a novel level of abstraction for certified exact real computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cruz-Filipe, L., Geuvers, H., Wiedijk, F.: C-CoRN, the Constructive Coq Repository at Nijmegen. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS, vol. 3119, pp. 88–103. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  2. Spitters, B., van der Weegen, E.: Type classes for mathematics in type theory. MSCS, Special Issue on “Interactive Theorem Proving and the Formalization of Mathematics” 21, 1–31 (2011)

    Google Scholar 

  3. Krebbers, R., Spitters, B.: Type classes for efficient exact real arithmetic in Coq. LMCS 9(1:1) (2013), doi:10.2168/LMCS-9(1:01)2013

    Google Scholar 

  4. O’Connor, R.: Certified Exact Transcendental Real Number Computation in Coq. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 246–261. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Gonthier, G., Ziliani, B., Nanevski, A., Dreyer, D.: How to make ad hoc proof automation less ad hoc. In: ICFP, pp. 163–175 (2011)

    Google Scholar 

  6. O’Connor, R., Spitters, B.: A computer verified, monadic, functional implementation of the integral. TCS 411, 3386–3402 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bridger, M.: Real analysis, a constructive approach. Pure and Applied Mathematics (New York). Wiley (2007)

    Google Scholar 

  8. Julien, N., Paşca, I.: Formal Verification of Exact Computations Using Newton’s Method. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 408–423. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Coquand, T., Spitters, B.: A constructive proof of Simpson’s rule. Logic and Analysis 4(15), 1–8 (2012)

    MathSciNet  Google Scholar 

  10. Boespflug, M., Dénès, M., Grégoire, B.: Full reduction at full throttle. In: Jouannaud, J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 362–377. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Immler, F., Hölzl, J.: Numerical analysis of ordinary differential equations in Isabelle/HOL. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 377–392. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Boldo, S., Clément, F., Filliâtre, J.-C., Mayero, M., Melquiond, G., Weis, P.: Formal proof of a wave equation resolution scheme: the method error. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 147–162. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Boldo, S., Clément, F., Filliâtre, J., Mayero, M., Melquiond, G., Weis, P.: Wave equation numerical resolution: a comprehensive mechanized proof of a C program. Journal of Automated Reasoning, 1–34 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Makarov, E., Spitters, B. (2013). The Picard Algorithm for Ordinary Differential Equations in Coq. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds) Interactive Theorem Proving. ITP 2013. Lecture Notes in Computer Science, vol 7998. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39634-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39634-2_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39633-5

  • Online ISBN: 978-3-642-39634-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics