Square Root and Division Elimination in PVS

  • Pierre Neron
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7998)


In this paper we present a new strategy for PVS that implements a square root and division elimination in order to use automatic arithmetic strategies that were not able to deal with these operations in the first place. This strategy relies on a PVS formalization of the square root and division elimination and deep embedding of PVS expressions inside PVS. Therefore using computational reflection and symbolic computation we are able to automatically transform expressions into division and square root free ones before using these decision procedures.


Symbolic Evaluation Strategy Language Equivalent Program Cylindrical Algebraic Decomposition Large Scale Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Archer, M., Vito, B.D., Muñoz, C.: Developing user strategies in PVS: A tutorial. In: Proceedings of Design and Application of Strategies/Tactics in Higher Order Logics, STRATA 2003, NASA/CP-2003-212448, NASA LaRC, Hampton, VA, USA, pp. 23681–22199 (September 2003)Google Scholar
  2. 2.
    Barrett, C., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 298–302. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition: A synopsis. SIGSAM Bull. 10, 10–12 (1976)CrossRefGoogle Scholar
  4. 4.
    Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for dpll(t). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Lescuyer, S., Conchon, S.: Improving coq propositional reasoning using a lazy cnf conversion scheme. In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS, vol. 5749, pp. 287–303. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Neron, P.: A formal proof of square root and division elimination in embedded programs. In: Hawblitzel, C., Miller, D. (eds.) CPP 2012. LNCS, vol. 7679, pp. 256–272. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Owre, S., Rushby, J.M., Shankar, N.: Pvs: A prototype verification system. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg (1992)Google Scholar
  8. 8.
    Wildmoser, M., Nipkow, T.: Certifying machine code safety: Shallow versus deep embedding. In: Slind, K., Bunker, A., Gopalakrishnan, G.C. (eds.) TPHOLs 2004. LNCS, vol. 3223, pp. 305–320. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Pierre Neron
    • 1
  1. 1.École polytechnique - INRIAFrance

Personalised recommendations