Skip to main content

Communicating Formal Proofs: The Case of Flyspeck

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 7998)

Abstract

We introduce a platform for presenting and cross-linking formal and informal proof developments together. The platform supports writing natural language ‘narratives’ that include islands of formal text. The formal text contains hyperlinks and gives on-demand state information at every proof step. We argue that such a system significantly lowers the threshold for understanding formal development and facilitates collaboration on informal and formal parts of large developments. As an example, we show the Flyspeck formal development (in HOL Light) and the Flyspeck informal mathematical text as a narrative linked to the formal development. To make this possible, we use the Agora system, a MathWiki platform developed at Nijmegen which has so far mainly been used with the Coq theorem prover: we show that the system itself is generic and easily adapted to the HOL Light case.

Keywords

  • Formal Proof
  • Formal Text
  • Formal Development
  • Source Text
  • Proof Assistant

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-39634-2_32
  • Chapter length: 6 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   64.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-39634-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   84.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gonthier, G.: Engineering mathematics: the odd order theorem proof. In: Giacobazzi, R., Cousot, R. (eds.) POPL, pp. 1–2. ACM (2013)

    Google Scholar 

  2. Gonthier, G.: The four colour theorem: Engineering of a formal proof. In: Kapur, D. (ed.) ASCM 2007. LNCS (LNAI), vol. 5081, pp. 333–333. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  3. Hales, T.C., Harrison, J., McLaughlin, S., Nipkow, T., Obua, S., Zumkeller, R.: A revision of the proof of the Kepler conjecture. Discrete & Computational Geometry 44(1), 1–34 (2010)

    MathSciNet  MATH  CrossRef  Google Scholar 

  4. Tankink, C., Geuvers, H., McKinna, J., Wiedijk, F.: Proviola: A tool for proof re-animation. In: Autexier, S., Calmet, J., Delahaye, D., Ion, P.D.F., Rideau, L., Rioboo, R., Sexton, A.P. (eds.) AISC 2010. LNCS, vol. 6167, pp. 440–454. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  5. Tankink, C.: Proof in context — Web editing with rich, modeless contextual feedback. To appear in Proceedings of UITP 2012 (2012)

    Google Scholar 

  6. Tankink, C., McKinna, J.: Dynamic proof pages. In: ITP Workshop on Mathematical Wikis (MathWikis). Number 767 in CEUR Workshop Proceedings (2011)

    Google Scholar 

  7. Tankink, C., Lange, C., Urban, J.: Point-and-write – documenting formal mathematics by reference. In: Jeuring, J., Campbell, J.A., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.) CICM 2012. LNCS, vol. 7362, pp. 169–185. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  8. Harrison, J.: HOL Light: An overview. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 60–66. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  9. Hales, T.C.: Dense Sphere Packings - a blueprint for formal proofs. Cambridge University Press (2012)

    Google Scholar 

  10. Sauer, C., Smith, C., Benz, T.: Wikicreole: A common wiki markup. In: WikiSym 2007, pp. 131–142. ACM, New York (2007)

    Google Scholar 

  11. Wenzel, M., Paulson, L.: Isabelle/isar. In: Wiedijk, F. (ed.) The Seventeen Provers of the World. LNCS (LNAI), vol. 3600, pp. 41–49. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  12. Alama, J., Brink, K., Mamane, L., Urban, J.: Large formal wikis: Issues and solutions. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) Calculemus/MKM 2011. LNCS, vol. 6824, pp. 133–148. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  13. Corbineau, P., Kaliszyk, C.: Cooperative repositories for formal proofs. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.) MKM/CALCULEMUS 2007. LNCS (LNAI), vol. 4573, pp. 221–234. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  14. Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Flyspeck. CoRR abs/1211.7012 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tankink, C., Kaliszyk, C., Urban, J., Geuvers, H. (2013). Communicating Formal Proofs: The Case of Flyspeck. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds) Interactive Theorem Proving. ITP 2013. Lecture Notes in Computer Science, vol 7998. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39634-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39634-2_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39633-5

  • Online ISBN: 978-3-642-39634-2

  • eBook Packages: Computer ScienceComputer Science (R0)