Program Extraction from Nested Definitions

  • Kenji Miyamoto
  • Fredrik Nordvall Forsberg
  • Helmut Schwichtenberg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7998)

Abstract

Minlog is a proof assistant which automatically extracts computational content in an extension of Gödel’s T from formalized proofs. We report on extending Minlog to deal with predicates defined using a particular combination of induction and coinduction, via so-called nested definitions. In order to increase the efficiency of the extracted programs, we have also implemented a feature to translate terms into Haskell programs. To illustrate our theory and implementation, a formalisation of a theory of uniformly continuous functions due to Berger is presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Berger, U.: Program extraction from normalization proofs. In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 91–106. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  3. 3.
    Berger, U.: From coinductive proofs to exact real arithmetic: theory and applications. Logical Methods in Computer Science 7(1), 1–24 (2011)CrossRefGoogle Scholar
  4. 4.
    Berger, U., Seisenberger, M.: Proofs, programs, processes. Theory of Computing Systems 51, 313–329 (2012)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Berghofer, S., Nipkow, T.: Executing higher order logic. In: Callaghan, P., Luo, Z., McKinna, J., Pollack, R. (eds.) TYPES 2000. LNCS, vol. 2277, pp. 24–40. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Bird, R., Meertens, L.: Nested datatypes. In: Jeuring, J. (ed.) MPC 1998. LNCS, vol. 1422, pp. 52–67. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Bishop, E.: Foundations of Constructive Analysis. McGraw-Hill, New York (1967)MATHGoogle Scholar
  8. 8.
    Ciaffaglione, A., Di Gianantonio, P.: A co-inductive approach to real numbers. In: Coquand, T., Nordström, B., Dybjer, P., Smith, J. (eds.) TYPES 1999. LNCS, vol. 1956, pp. 114–130. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
  10. 10.
    Danielsson, N.A., Altenkirch, T.: Mixing Induction and Coinduction. Draft (2009)Google Scholar
  11. 11.
    Ghani, N., Hancock, P., Pattinson, D.: Continuous functions on final coalgebras. In: Power, J. (ed.) CMCS 2006. Electr. Notes in Theoret. Computer Science (2006)Google Scholar
  12. 12.
    Hancock, P., Pattinson, D., Ghani, N.: Representations of stream processors using nested fixed points. Logical Methods in Computer Science 5(3) (2009)Google Scholar
  13. 13.
  14. 14.
    Jacobs, B., Rutten, J.: An introduction to (co)algebras and (co)induction. In: Sangiorgi, D., Rutten, J. (eds.) Advanced Topics in Bisimulation and Coinduction, vol. 52, pp. 38–99. Cambridge University Press (2011)Google Scholar
  15. 15.
    Krebbers, R., Spitters, B.: Type classes for efficient exact real arithmetic in Coq. Logical Methods in Computer Science 9(1) (2013)Google Scholar
  16. 16.
    Kreisel, G.: Interpretation of analysis by means of constructive functionals of finite types. In: Heyting, A. (ed.) Constructivity in Mathematics, pp. 101–128. North-Holland, Amsterdam (1959)Google Scholar
  17. 17.
    Letouzey, P.: Extraction in coq: An overview. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 359–369. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    The Minlog System, http://www.minlog-system.de
  19. 19.
  20. 20.
    Nakata, K., Uustalu, T.: Resumptions, weak bisimilarity and big-step semantics for while with interactive I/O: An exercise in mixed induction-coinduction. In: Aceto, L., Sobocinski, P. (eds.) SOS. EPTCS, vol. 32, pp. 57–75 (2010)Google Scholar
  21. 21.
  22. 22.
    Schwichtenberg, H.: Minlog. In: Wiedijk, F. (ed.) The Seventeen Provers of the World. LNCS (LNAI), vol. 3600, pp. 151–157. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Schwichtenberg, H.: Constructive analysis with witnesses. Manuscript (April 2012), http://www.math.lmu.de/~schwicht/seminars/semws11/constr11.pdf
  24. 24.
    Schwichtenberg, H., Wainer, S.S.: Proofs and Computations. In: Perspectives in Logic. Association for Symbolic Logic and Cambridge University Press (2012)Google Scholar
  25. 25.
    Scott, D.: Domains for denotational semantics. In: Nielsen, M., Schmidt, E.M. (eds.) ICALP 1982. LNCS, vol. 140, pp. 577–610. Springer, Heidelberg (1982)CrossRefGoogle Scholar
  26. 26.
    Takeyama, M.: A new compiler MAlonzo, https://lists.chalmers.se/pipermail/agda/2008/000219.html
  27. 27.
    Wiedmer, E.: Exaktes Rechnen mit reellen Zahlen und anderen unendlichen Objekten. PhD thesis, ETH Zürich (1977)Google Scholar
  28. 28.
    Wiedmer, E.: Computing with infinite objects. Theoretical Comput. Sci. 10, 133–155 (1980)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kenji Miyamoto
    • 1
  • Fredrik Nordvall Forsberg
    • 2
  • Helmut Schwichtenberg
    • 1
  1. 1.Ludwig-Maximilians-Universität MünchenGermany
  2. 2.Swansea UniversityUK

Personalised recommendations