Skip to main content

Mechanical Verification of SAT Refutations with Extended Resolution

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 7998)

Abstract

We present a mechanically-verified proof checker developed with the ACL2 theorem-proving system that is general enough to support the growing variety of increasingly complex satisfiability (SAT) solver techniques, including those based on extended resolution. A common approach to assure the correctness of SAT solvers is to emit a proof of unsatisfiability when no solution is reported to exist. Contemporary proof checkers only check logical equivalence using resolution-style inference. However, some state-of-the-art, conflict-driven clause-learning SAT solvers use preprocessing, inprocessing, and learning techniques, that cannot be checked solely by resolution-style inference. We have developed a mechanically-verified proof checker that assures refutation clauses preserve satisfiability. We believe our approach is sufficiently expressive to validate all known SAT-solver techniques.

Keywords

  • Unit Propagation
  • Conjunctive Normal Form
  • Unit Clause
  • Conjunctive Normal Form Formula
  • Empty Clause

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-39634-2_18
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   64.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-39634-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   84.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goldberg, E.I., Prasad, M.R., Brayton, R.K.: Using SAT for combinational equivalence checking. In: Design, Automation and Test in Europe Conference and Exhibition (DATE), pp. 114–121. IEEE (2001)

    Google Scholar 

  2. Lescuyer, S., Conchon, S.: A reflexive formalization of a SAT solver in Coq. In: International Conference on Theorem Proving in Higher Order Logics, TPHOLs (2008)

    Google Scholar 

  3. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM (JACM) 7(3), 201–215 (1960)

    MathSciNet  MATH  CrossRef  Google Scholar 

  4. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Communications of the ACM 5(7), 394–397 (1962)

    MathSciNet  MATH  CrossRef  Google Scholar 

  5. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development: Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. Springer (2004)

    Google Scholar 

  6. Shankar, N., Vaucher, M.: The mechanical verification of a DPLL-based satisfiability solver. Electronic Notes in Theoretical Computer Science 269, 3–17 (2011)

    MathSciNet  CrossRef  Google Scholar 

  7. Marić, F.: Formalization and implementation of modern SAT solvers. Journal of Automated Reasoning 43(1), 81–119 (2009)

    MathSciNet  MATH  CrossRef  Google Scholar 

  8. Marić, F.: Formal verification of a modern SAT solver by shallow embedding into Isabelle/HOL. Theoretical Computer Science 411(50), 4333–4356 (2010)

    MathSciNet  MATH  CrossRef  Google Scholar 

  9. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  10. Oe, D., Stump, A., Oliver, C., Clancy, K.: versat: A verified modern SAT solver. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 363–378. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  11. Zhang, L., Malik, S.: Validating SAT solvers using an independent resolution-based checker: Practical implementations and other applications. In: Design, Automation and Test in Europe Conference and Exhibition (DATE), pp. 880–885. IEEE (2003)

    Google Scholar 

  12. Van Gelder, A.: Verifying RUP proofs of propositional unsatisfiability. In: International Symposium on Artificial Intelligence and Mathematics, ISAIM (2008)

    Google Scholar 

  13. Biere, A.: PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and Computation 4(75-97), 45 (2008)

    Google Scholar 

  14. Weber, T.: Efficiently checking propositional resolution proofs in Isabelle/HOL. In: International Workshop on the Implementation of Logics (IWIL), vol. 212, pp. 44–62 (2006)

    Google Scholar 

  15. Weber, T., Amjad, H.: Efficiently checking propositional refutations in HOL theorem provers. Journal of Applied Logic 7(1), 26–40 (2009)

    MathSciNet  MATH  CrossRef  Google Scholar 

  16. Darbari, A., Fischer, B., Marques-Silva, J.: Industrial-strength certified SAT solving through verified SAT proof checking. In: Cavalcanti, A., Deharbe, D., Gaudel, M.-C., Woodcock, J. (eds.) ICTAC 2010. LNCS, vol. 6255, pp. 260–274. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  17. Armand, M., Faure, G., Grégoire, B., Keller, C., Théry, L., Wener, B.: Verifying SAT and SMT in Coq for a fully automated decision procedure. In: PSATTT 2011: International Workshop on Proof-Search in Axiomatic Theories and Type Theories (2011)

    Google Scholar 

  18. Goldberg, E.I., Novikov, Y.: Verification of proofs of unsatisfiability for CNF formulas. In: Design, Automation and Test in Europe Conference and Exhibition (DATE), pp. 10886–10891. IEEE (2003)

    Google Scholar 

  19. Oe, D., Stump, A.: Combining a logical framework with an RUP checker for SMT proofs. In: Satisfiability Modulo Theories (SMT), p. 40 (2011)

    Google Scholar 

  20. Manthey, N., Heule, M.J.H., Biere, A.: Automated reencoding of boolean formulas. In: Proceedings of Haifa Verification Conference (to appear, 2013)

    Google Scholar 

  21. Kullmann, O.: On a generalization of extended resolution. Discrete Applied Mathematics 96-97, 149–176 (1999)

    MathSciNet  CrossRef  Google Scholar 

  22. Audemard, G., Katsirelos, G., Simon, L.: A restriction of extended resolution for clause learning SAT solvers. In: Fox, M., Poole, D. (eds.) Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI). AAAI Press (2010)

    Google Scholar 

  23. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Siekmann, J., Wrightson, G. (eds.) Automation of Reasoning 2, pp. 466–483. Springer (1983)

    Google Scholar 

  24. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 355–370. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  25. Heule, M.J.H., Hunt Jr., W.A., Wetzler, N.: Verifying refutations with extended resolution. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 345–359. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  26. Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: An Approach. Kluwer Academic Publishers, Boston (2000)

    Google Scholar 

  27. Marques-Silva, J., Lynce, I., Malik, S.: Conflict-Driven Clause Learning SAT Solvers. Handbook of Satisfiability, ch. 4, pp. 131–153. IOS Press (February 2009)

    Google Scholar 

  28. Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the potential of clause learning. Journal of Artificial Intelligence Research (JAIR) 22, 319–351 (2004)

    MathSciNet  MATH  Google Scholar 

  29. Haken, A.: The intractability of resolution. Theoretical Computer Science 39, 297–308 (1985)

    MathSciNet  MATH  CrossRef  Google Scholar 

  30. Cook, S.A.: A short proof of the pigeon hole principle using extended resolution. SIGACT News 8(4), 28–32 (1976)

    CrossRef  Google Scholar 

  31. Marques Silva, J., Sakallah, K.A.: Grasp: A search algorithm for propositional satisfiability. IEEE Trans. Computers 48(5), 506–521 (1999)

    MathSciNet  CrossRef  Google Scholar 

  32. Eén, N., Biere, A.: Effective preprocessing in sat through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  33. Davis, J., Swords, S.: Verified AIG Algorithms in ACL2. In: Gamboa, R., Davis, J. (eds.) Proceedings International Workshop on the ACL2 Theorem Prover and its Applications, ACL2. EPTCS, vol. 114, pp. 95–110 (2013), http://dx.doi.org/10.4204/EPTCS.114

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wetzler, N., Heule, M.J.H., Hunt, W.A. (2013). Mechanical Verification of SAT Refutations with Extended Resolution. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds) Interactive Theorem Proving. ITP 2013. Lecture Notes in Computer Science, vol 7998. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39634-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39634-2_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39633-5

  • Online ISBN: 978-3-642-39634-2

  • eBook Packages: Computer ScienceComputer Science (R0)