Skip to main content

Molecular Biological Mechanisms in Photodynamic Therapy

  • Chapter
  • First Online:
Photodynamic Therapy
  • 2254 Accesses

Abstract

Cellular and molecular photodamage mechanisms are initiated by light-activation of a photosensitizer following its accumulation in cellular targets. While lethal doses of photodynamic therapy (PDT) eliminate vessels and cells, sublethal effects occur, e.g., during fluorescence diagnosis (FD). Accordingly, the events subsequent photoactivation lead to different cellular endpoints being primarily growth stimulation, damage repair, autophagy, apoptosis, and necrosis. Activation of survival pathways seems to be not only involved in growth stimulation, but also in PDT damage transmission. Sublethal PDT results from activation of cellular damage protection and adaptive mechanisms, and can modulate signaling pathways and immune reactions. Autophagy may serve to rescue cells or lead to cell death under special conditions. Lethal PDT activates stress response, e.g., via mitochondria or ER, inducing apoptosis. If the damage is too severe, the cellular energy level low or the plasma membrane leaky, cells will die by necrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AIF:

Apoptosis-inducing factor

AKT:

Protein kinase B

ALA:

Aminolevulinic acid

ANT:

Adenine nucleotide translocator

AP-1:

Activator protein 1

APAF-1:

Apoptotic protease activating factor-1

Bak:

Bcl-2 homologous antagonist/killer

Bax:

Bcl-2–associated X protein

BCL-2:

B-cell lymphoma 2

BID:

BH3 interacting-domain death agonist

COX-2:

Cyclooxygenase-2

DUSP-1:

Dual specificity phosphatase 1

ECM:

Extracellular matrix

ERK2:

Extracellular signal-regulated kinase 2

FAS:

TNF receptor superfamily, member 6

c-fos:

FBJ murine osteosarcoma viral oncogene homolog

FD:

Fluorescence diagnosis

HO-1:

Heme oxygenase 1

c-jun:

Jun proto-oncogene

JNK:

c-Jun N-terminal kinase

MAPK:

Mitogen-activated protein kinase

mHK:

Mitochondria-bound hexokinase

mTOR:

Mammalian target of rapamycin

NF-kappa B:

Nuclear factor ‘kappa-light-chain-enhancer’ of activated B-cells

PDD:

Photodynamic diagnosis

PDT:

Photodynamic therapy

PI3 K:

Phosphatidylinositol-3-kinase

PpIX:

Protoporphyrin IX

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SERCA2:

Sarco/endoplasmic Ca2+ -ATPase-2

UPR:

Unfolded protein response

VEGF:

Vascular endothelial growth factor

References

  1. Dolmans DE, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3(5):380–387

    Article  CAS  Google Scholar 

  2. Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61(4):250–281

    Article  Google Scholar 

  3. Korbelik M, Parkins CS, Shibuya H, Cecic I, Stratford MR, Chaplin DJ (2000) Nitric oxide production by tumour tissue: impact on the response to photodynamic therapy. Br J Cancer 82(11):1835–1843

    Article  CAS  Google Scholar 

  4. Price M, Kessel D (2010) On the use of fluorescence probes for detecting reactive oxygen and nitrogen species associated with photodynamic therapy. J Biomed Opt 15(5):051605

    Article  Google Scholar 

  5. Krammer B, Hubmer A, Hermann A (1993) Photodynamic effects on the nuclear envelope of human skin fibroblasts. J Photochem Photobiol, B 17(2):109–114

    Article  CAS  Google Scholar 

  6. Sanovic R, Krammer B, Grumboeck S, Verwanger T (2009) Time-resolved gene expression profiling of human squamous cell carcinoma cells during the apoptosis process induced by photodynamic treatment with hypericin. Int J Oncol 35(4):921–939

    CAS  Google Scholar 

  7. Casas A, Di Venosa G, Hasan T, Al B (2011) Mechanisms of resistance to photodynamic therapy. Curr Med Chem 18(16):2486–2515

    Article  CAS  Google Scholar 

  8. Hubmer A, Hermann A, Uberriegler K, Krammer B (1996) Role of calcium in photodynamically induced cell damage of human fibroblasts. Photochem Photobiol 64(1):211–215

    Article  CAS  Google Scholar 

  9. Reiners JJJ, Agostinis P, Berg K, Oleinick NL, Kessel D (2010) Assessing autophagy in the context of photodynamic therapy. Autophagy 6(1):7–18

    Article  CAS  Google Scholar 

  10. Krammer B (2001) Vascular effects of photodynamic therapy. Anticancer Res 21(6B):4271–4277

    CAS  Google Scholar 

  11. Bhuvaneswari R, Gan YY, Lucky SS, Chin WW, Ali SM, Soo KC, Olivo M (2008) Molecular profiling of angiogenesis in hypericin mediated photodynamic therapy. Mol Cancer 7:56

    Article  Google Scholar 

  12. Pazos MC, Nader HB (2007) Effect of photodynamic therapy on the extracellular matrix and associated components. Braz J Med Biol Res 40(8):1025–1035

    Article  CAS  Google Scholar 

  13. Korbelik M (2011) Cancer vaccines generated by photodynamic therapy. Photochem Photobiol Sci 10(5):664–669

    Article  CAS  Google Scholar 

  14. Sanovic R, Verwanger T, Hartl A, Krammer B (2011) Low dose hypericin-PDT induces complete tumor regression in BALB/c mice bearing CT26 colon carcinoma. Photodiagnosis Photodyn Ther 8(4):291–296

    Article  CAS  Google Scholar 

  15. Berlanda J, Kiesslich T, Engelhardt V, Krammer B, Plaetzer K (2010) Comparative in vitro study on the characteristics of different photosensitizers employed in PDT. J Photochem Photobiol, B 100(3):173–180

    Article  CAS  Google Scholar 

  16. Zancanela DC, Primo FL, Rosa AL, Ciancaglini P, Tedesco AC (2011) The effect of photosensitizer drugs and light stimulation on osteoblast growth. Photomed Laser Surg 29(10):699–705

    Article  CAS  Google Scholar 

  17. Agostinis P, Vantieghem A, Merlevede W, de Witte PA (2002) Hypericin in cancer treatment: more light on the way. Int J Biochem Cell Biol 34(3):221–241

    Article  CAS  Google Scholar 

  18. Coupienne I, Bontems S, Dewaele M, Rubio N, Habraken Y, Fulda S, Agostinis P, Piette J (2011) NF-kappaB inhibition improves the sensitivity of human glioblastoma cells to 5-aminolevulinic acid-based photodynamic therapy. Biochem Pharmacol 81(5):606–616

    Article  CAS  Google Scholar 

  19. Schmidt-Erfurth U, Schlotzer-Schrehard U, Cursiefen C, Michels S, Beckendorf A, Naumann GO (2003) Influence of photodynamic therapy on expression of vascular endothelial growth factor (VEGF), VEGF receptor 3, and pigment epithelium-derived factor. Invest Ophthalmol Vis Sci 44(10):4473–4480

    Article  Google Scholar 

  20. Kocanova S, Buytaert E, Matroule JY, Piette J, Golab J, de Witte P, Agostinis P (2007) Induction of heme-oxygenase 1 requires the p38MAPK and PI3 K pathways and suppresses apoptotic cell death following hypericin-mediated photodynamic therapy. Apoptosis 12(4):731–741

    Article  CAS  Google Scholar 

  21. Assefa Z, Vantieghem A, Declercq W, Vandenabeele P, Vandenheede JR, Merlevede W, de Witte P, Agostinis P (1999) The activation of the c-Jun N-terminal kinase and p38 mitogen-activated protein kinase signaling pathways protects HeLa cells from apoptosis following photodynamic therapy with hypericin. J Biol Chem 274(13):8788–8796

    Article  CAS  Google Scholar 

  22. Hendrickx N, Volanti C, Moens U, Seternes OM, de Witte P, Vandenheede JR, Piette J, Agostinis P (2003) Up-regulation of cyclooxygenase-2 and apoptosis resistance by p38 MAPK in hypericin-mediated photodynamic therapy of human cancer cells. J Biol Chem 278(52):52231–52239

    Article  CAS  Google Scholar 

  23. Vantieghem A, Xu Y, Assefa Z, Piette J, Vandenheede JR, Merlevede W, De Witte PA, Agostinis P (2002) Phosphorylation of Bcl-2 in G2/M phase-arrested cells following photodynamic therapy with hypericin involves a CDK1-mediated signal and delays the onset of apoptosis. J Biol Chem 277(40):37718–37731

    Article  CAS  Google Scholar 

  24. Buytaert E, Dewaele M, Agostinis P (2007) Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim Biophys Acta 1776(1):86–107

    CAS  Google Scholar 

  25. Berlanda J, Kiesslich T, Oberdanner CB, Obermair FJ, Krammer B, Plaetzer K (2006) Characterization of apoptosis induced by photodynamic treatment with hypericin in A431 human epidermoid carcinoma cells. J Environ Pathol Toxicol Oncol 25(1–2):173–188

    Article  CAS  Google Scholar 

  26. Skulachev VP (2001) The programmed death phenomena, aging, and the Samurai law of biology. Exp Gerontol 36(7):995–1024

    Article  CAS  Google Scholar 

  27. Furre IE, Shahzidi S, Luksiene Z, Moller MT, Borgen E, Morgan J, Tkacz-Stachowska K, Nesland JM, Peng Q (2005) Targeting PBR by hexaminolevulinate-mediated photodynamic therapy induces apoptosis through translocation of apoptosis-inducing factor in human leukemia cells. Cancer Res 65(23):11051–11060

    Article  CAS  Google Scholar 

  28. Miccoli L, Beurdeley-Thomas A, De Pinieux G, Sureau F, Oudard S, Dutrillaux B, Poupon MF (1998) Light-induced photoactivation of hypericin affects the energy metabolism of human glioma cells by inhibiting hexokinase bound to mitochondria. Cancer Res 58(24):5777–5786

    CAS  Google Scholar 

  29. Buytaert E, Matroule JY, Durinck S, Close P, Kocanova S, Vandenheede JR, de Witte PA, Piette J, Agostinis P (2008) Molecular effectors and modulators of hypericin-mediated cell death in bladder cancer cells. Oncogene 27(13):1916–1929

    Article  CAS  Google Scholar 

  30. Buytaert E, Callewaert G, Hendrickx N, Scorrano L, Hartmann D, Missiaen L, Vandenheede JR, Heirman I, Grooten J, Agostinis P (2006) Role of endoplasmic reticulum depletion and multidomain proapoptotic BAX and BAK proteins in shaping cell death after hypericin-mediated photodynamic therapy. Faseb J 20(6):756–758

    CAS  Google Scholar 

  31. Blank M, Mandel M, Keisari Y, Meruelo D, Lavie G (2003) Enhanced ubiquitinylation of heat shock protein 90 as a potential mechanism for mitotic cell death in cancer cells induced with hypericin. Cancer Res 63(23):8241–8247

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Krammer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krammer, B., Verwanger, T. (2014). Molecular Biological Mechanisms in Photodynamic Therapy. In: Abdel-Kader, M. (eds) Photodynamic Therapy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39629-8_3

Download citation

Publish with us

Policies and ethics