Formalization of Natural Language Regulations through SBVR Structured English

(Tutorial)
  • François Lévy
  • Adeline Nazarenko
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8035)

Abstract

This paper presents an original use of SBVR to help building a set of business rules out of regulatory documents. The formalization is analyzed as a three-step process, in which SBVR-SE stands in an intermediate position between the Natural Language on the one hand and the formal language on the other hand. The rules are extracted, clarified and simplified at the general regulatory level (expert task) before being refined according to the business application (engineer task). A methodology for these first two steps is described, with different operations composing each step. It is illustrated with examples from the literature and from the Ontorule use cases.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bajec, M., Krisper, M.: Issues and challenges in business rule-based information systems development. In: ECIS (2005)Google Scholar
  2. 2.
    Bajwa, I.S., Lee, M.G., Bordbar, B.: Sbvr business rules generation from natural language specification. In: AAAI Spring Symposium 2011 Artificial Intelligence 4 Business Agility, pp. 541–545, AAAI, San Francisco (2011), www.aaai.org/ocs/index.php/SSS/SSS11/paper/download/2378/2918
  3. 3.
    Baumeister, J., Reutelshoefer, J., Puppe, F.: Engineering intelligent systems on the knowledge formalization continuum. International Journal of Applied Mathematics and Computer Science (AMCS) 21(1) (2011)Google Scholar
  4. 4.
    BRG: Defining business rules – what are they really? The Business Rules Group : formerly, known as the GUIDE Business Rules Project - Final Report revision 1.3 (July, 2000)Google Scholar
  5. 5.
    Brodie, C., Karat, C.M., Karat, J.: An empirical study of natural language parsing of privacy policy rules using the sparcle policy workbench. In: SOUPS 2006 (2006)Google Scholar
  6. 6.
    Chandrasekar, R., Doran, C., Srinivas, B.: Motivations and methods for text simplification. In: Proceedings of the Sixteenth International Conference on Computational Linguistics (COLING 1996), pp. 1041–1044 (1996)Google Scholar
  7. 7.
    Chandrasekar, R., Srinivas, B.: Automatic induction of rules for text simplification (1997)Google Scholar
  8. 8.
    Dinesh, N., Joshi, A., Lee, I., Sokolsky, O.: Reasoning about conditions and exceptions to laws in regulatory conformance checking. In: van der Meyden, R., van der Torre, L. (eds.) DEON 2008. LNCS (LNAI), vol. 5076, pp. 110–124. Springer, Heidelberg (2008), http://repository.upenn.edu/cis_papers/371 CrossRefGoogle Scholar
  9. 9.
    Dubauskaite, R., Vasilecas, O.: An open issues in business rules based information system development. In: Innovative Infotechnologies for Science, Business and Education, vol. 1 (2009)Google Scholar
  10. 10.
    Gasperin, C., Specia, L., Pereira, T.F., Aluisio, S.M.: Learning when to simplify sentences for natural text simplification. In: ENIA 2009 (VII Encontro Nacional de Inteligência Artificial) (2009)Google Scholar
  11. 11.
    The Object Management Group: Semantics of business vocabulary and business rules. Tech. rep., The Object Management Group (2008), http://www.omg.com/
  12. 12.
    von Halle, B., Goldberg, L.: The Decision Model: A Business Logic Framework Linking Business and Technology. Taylor & Francis, LLC, Auerbach (2009)Google Scholar
  13. 13.
    Halle, B., Goldberg, L., Zackman, J.: Business Rule Revolution: Running Business the Right Way. Happy About (2006), http://books.google.com/books?id=I3mvAAAACAAJ
  14. 14.
    Linehan, M.H., de Sainte Marie, C.: The relationship of decision model and notation (dmn) to sbvr and bpmn. Business Rules Journal 12(6) (June 2011), http://www.BRCommunity.com/a2011/b597.html
  15. 15.
    Max, A.: Simplification interactive pour la production de textes adaptés aux personnes souffrant de troubles de la compréhension. In: Proceedings of TALN, Poster Session (2005), http://www.limsi.fr/Individu/amax/recherche/articles/Max-TALN05.pdf
  16. 16.
    Mendonça, D., Wallace, W.A.: Development of a decision logic to support group improvisation: An application to emergency response. In: 35th Hawaii International Conference on System Sciences (2002)Google Scholar
  17. 17.
    Nazarenko, A., Guissé, A., Lévy, F., Omrane, N., Szulman, S.: Integrating Written Policies in Business Rule Management Systems. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML 2011 - Europe. LNCS, vol. 6826, pp. 99–113. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
  19. 19.
    Omrane, N., Nazarenko, A., Rosina, P., Szulman, S., Westphal, C.: Lexicalized ontology for a business rules management platform: An automotive use case. In: Olken, F., Palmirani, M., Sottara, D. (eds.) RuleML - America 2011. LNCS, vol. 7018, pp. 179–192. Springer, Heidelberg (2011)Google Scholar
  20. 20.
    Ross, R.G.: Principles of the Business Rule Approach, ch. 8-12. Addison-Wesley, Boston (2003)Google Scholar
  21. 21.
    Ross, R.G.: Decision analysis using decision tables and business rules. Tech. rep., Business Rule Solutions (2010)Google Scholar
  22. 22.
    Siddharthan, A., Caius, G.: Syntactic simplification and text cohesion (2003)Google Scholar
  23. 23.
    Spreeuwenberg, S.: Rule authoring is a creative process. Business Rules Journal 10(9) (September 2009), http://www.BRCommunity.com/a2009/b497.html
  24. 24.
    Unger, C., Bühmann, L., Lehmann, J., Ngomo, A.C.N., Gerber, D., Cimiano, P.: Sparql template based question answering. In: 21st International World Wide Web Conference, WWW 2012 (April 2012), http://data.semanticweb.org/conference/www/2012/paper/1290

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • François Lévy
    • 1
  • Adeline Nazarenko
    • 1
  1. 1.Sorbonne Paris Cité, LIPN, CNRS, (UMR 7030)Université Paris 13VilletaneuseFrance

Personalised recommendations