Advertisement

Interpreting Spatiotemporal Expressions from English to Fuzzy Logic

  • William R. Murray
  • Philip Harrison
  • Tomas Singliar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8035)

Abstract

We discuss extensions to a controlled natural language allowing spatiotemporal expressions to be interpreted as fuzzy logic functions. The extensions first required new sentence templates. Next, changes to a GPSG parser modified its lexicon, and then extended its parsing and logical form rules to allow user-defined spatial and temporal constraints to be extracted. The sentence templates ground user-defined culturally-specific times and places to boundaries surrounding prototypical ideals. Query points, defined by location and time, are compared to these definitions using Gaussians centered at prototypical ’ideal’ times or places. The Gaussians provide soft fall-off at the boundaries. Fuzzy logic operators allow larger expressions to be interpreted, analogous to Boolean combinations of terms.

The mathematically-interpreted spatiotemporal terms act as domain features for a machine learning algorithm. They allow easy specification (compared to programming) of basis functions for an inverse reinforcement learning algorithm that detects anomalous vehicle tracks or suspicious agent behavior.

Keywords

controlled natural language CPL spatiotemporal reasoning GPSG parsing inverse reinforcement learning fuzzy logic anomaly detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Murray, W.R., Singliar, T.: Spatiotemporal Extensions to a Controlled Natural Language. In: Kuhn, T., Fuchs, N.E. (eds.) CNL 2012. LNCS, vol. 7427, pp. 61–78. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Zadeh, L.A.: Fuzzy logic= computing with words. IEEE Transactions on Fuzzy Systems (1996)Google Scholar
  3. 3.
    Singliar, T., Marginenantu, D.: Scaling up Inverse Reinforcement Learning through Instructed Feature Construction. In: Snowbird Learning Workshop 2011 (2011), http://snowbird.djvuzone.org/2011/abstracts/132.pdf
  4. 4.
    Ng, A., Russell, S.: Algorithms for inverse reinforcement learning. In: Proceedings of ICML (2000)Google Scholar
  5. 5.
    Lakoff, G.: Women, Fire, and Dangerous Things. University of Chicago Press (1990)Google Scholar
  6. 6.
    Kövecses, Z.: Metaphor in Culture: Universality and Variation. Cambridge University Press (2005)Google Scholar
  7. 7.
    Harrison, P.: A New Algorithm for Parsing Generalized Phrase Structure Grammar, Ph.D. dissertation, University of Washington, Seattle (1988)Google Scholar
  8. 8.
    Barker, K., Porter, B., Clark, P.: A Library of Generic Concepts for Composing Knowledge Bases. In: Proc. 1st Int Conf. on Knowledge Capture, K-Cap 2001 (2001)Google Scholar
  9. 9.
    Fuchs, N.E., Schwertel, U., Schwitter, R.: Attempto Controlled English – Not Just Another Logic Specification Language. In: Flener, P. (ed.) LOPSTR 1998. LNCS, vol. 1559, pp. 1–20. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Schwitter, R., Tilbrook, M.: PENG: Processable ENGlish. Technical report, Macquarie University, Australia (2004)Google Scholar
  11. 11.
    Engelbrecht, P., Hart, G., Dolbear, C.: Talking Rabbit: A User Evaluation of Sentence Production. In: Fuchs, N.E. (ed.) CNL 2009. LNCS (LNAI), vol. 5972, pp. 56–64. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Pease, A., Murray, W.R.: An English to Logic Translator for Ontology-Based Knowledge Representation Languages. In: Proceedings of 2003 IEEE International Conference on Natural Language Processing and Knowledge Engineering, NLPKE 2003 (2003)Google Scholar
  13. 13.
    Clark, P., Murray, W.R., Harrison, P., Thompson, J.: Naturalness vs. Predictability: A Key Debate in Controlled Languages. In: Fuchs, N.E. (ed.) CNL 2009. LNCS (LNAI), vol. 5972, pp. 65–81. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Fellbaum, C.: WordNet: An Electronic Lexical Database (Language, Speech, and Communication), Hardcover, May 15 (1998)Google Scholar
  15. 15.
    Pustejovsky, J., Castaño, J., Ingria, R., Saurí, R., Gaizauskas, R., Setzer, A., Katz, G.: TimeML: Robust Specification of Event and Temporal Expressions in Text. In: Fifth International Workshop on Computational Semantics, IWCS-5 (2003)Google Scholar
  16. 16.
    Cristani, M., Cohn, A.G.: Mark-up Language for Spatial Knowledge. Journal of Visual Languages and Computing 13, 97–116 (2002)CrossRefGoogle Scholar
  17. 17.
    Allen, J.F.: Towards a general model of action and time. Artificial Intelligence 23(2) (1984)Google Scholar
  18. 18.
    Cohn, A.G., Bennett, B., Gooday, J., Gotts, N.M.: Qualitative spatial representation and reasoning with the region connection calculus. Geoinformatica (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • William R. Murray
    • 1
  • Philip Harrison
    • 1
  • Tomas Singliar
    • 1
  1. 1.Boeing Research and TechnologySeattleUSA

Personalised recommendations