Computing Temporal Defeasible Logic

  • Guido Governatori
  • Antonino Rotolo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8035)


We investigate the complexity of temporal defeasible logic, and propose an efficient algorithm to compute the extension of any theory. The logic and algorithm are discussed in regard to modeling deadlines and normative retroactivity.


Logic Program Linear Complexity Normative Reasoning Strict Rule Argumentation Framework 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, J.: Towards a general theory of action and time. Artificial Intelligence 23, 123–154 (1984)zbMATHCrossRefGoogle Scholar
  2. 2.
    Antoniou, G., Bikakis, A.: Dr-prolog: A system for defeasible reasoning with rules and ontologies on the semantic web. IEEE Trans. Knowl. Data Eng. 19(2), 233–245 (2007)CrossRefGoogle Scholar
  3. 3.
    Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Representation results for defeasible logic. ACM Transactions on Computational Logic 2, 255–287 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Embedding defeasible logic into logic programming. Theory and Practice of Logic Programming 6, 703–735 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Antoniou, G., Billington, D., Governatori, G., Maher, M.J., Rock, A.: A family of defeasible reasoning logics and its implementation. In: Proceedings of the 14th European Conference on Artificial Intelligence, pp. 459–463. IOS Press (2000)Google Scholar
  6. 6.
    Augusto, J., Simari, G.: Temporal defeasible reasoning. Knowledge and Information Systems 3, 287–318 (2001)zbMATHCrossRefGoogle Scholar
  7. 7.
    Barringer, H., Gabbay, D.M.: Modal and temporal argumentation networks. In: Manna, Z., Peled, D.A. (eds.) Time for Verification. LNCS, vol. 6200, pp. 1–25. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Bassiliades, N., Antoniou, G., Vlahavas, I.: A defeasible logic reasoner for the Semantic Web. International Journal on Semantic Web and Information Systems 2, 1–41 (2006)CrossRefGoogle Scholar
  9. 9.
    Dimaresis, N., Antoniou, G.: Implementing modal extensions of defeasible logic for the semantic web. In: AAAI 2007, pp. 1848–1849 (2007)Google Scholar
  10. 10.
    Governatori, G., Hulstijn, J., Riveret, R., Rotolo, A.: Characterising deadlines in temporal modal defeasible logic. In: Orgun, M.A., Thornton, J. (eds.) AI 2007. LNCS (LNAI), vol. 4830, pp. 486–496. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Governatori, G., Palmirani, M., Riveret, R., Rotolo, A., Sartor, G.: Norm modifications in defeasible logic. In: JURIX 2005, pp. 13–22. IOS Press, Amsterdam (2005)Google Scholar
  12. 12.
    Governatori, G., Rotolo, A.: BIO logical agents: Norms, beliefs, intentions in defeasible logic. Journal of Autonomous Agents and Multi Agent Systems 17, 36–69 (2008)CrossRefGoogle Scholar
  13. 13.
    Governatori, G., Rotolo, A.: A computational framework for institutional agency. Artif. Intell. Law 16(1), 25–52 (2008)CrossRefGoogle Scholar
  14. 14.
    Governatori, G., Rotolo, A.: Changing legal systems: Legal abrogations and annulments in defeasible logic. Logic Journal of IGPL 18(1), 157–194 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Governatori, G., Rotolo, A.: On the complexity of temporal defeasible logic. In: NMR 2010 (2010)Google Scholar
  16. 16.
    Governatori, G., Rotolo, A., Rubino, R.: Implementing temporal defeasible logic for modeling legal reasoning. In: Nakakoji, K., Murakami, Y., McCready, E. (eds.) JSAI-isAI 2009. LNCS (LNAI), vol. 6284, pp. 45–58. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Governatori, G., Rotolo, A., Sartor, G.: Temporalised normative positions in defeasible logic. In: ICAIL 2005, pp. 25–34. ACM Press (2005)Google Scholar
  18. 18.
    Governatori, G., Terenziani, P.: Temporal extensions to defeasible logic. In: Orgun, M.A., Thornton, J. (eds.) AI 2007. LNCS (LNAI), vol. 4830, pp. 476–485. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Kontopoulos, E., Bassiliades, N., Governatori, G., Antoniou, G.: A modal defeasible reasoner of deontic logic for the semantic web. Int. J. Semantic Web Inf. Syst. 7(1), 18–43 (2011)CrossRefGoogle Scholar
  20. 20.
    Lam, H.-P., Governatori, G.: The making of SPINdle. In: Governatori, G., Hall, J., Paschke, A. (eds.) RuleML 2009. LNCS, vol. 5858, pp. 315–322. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Lam, H.-P., Governatori, G.: What are the necessity rules in defeasible reasoning? In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 187–192. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Maher, M.J., Rock, A., Antoniou, G., Billington, D., Miller, T.: Efficient defeasible reasoning systems. International Journal of Artificial Intelligence Tools 10(4), 483–501 (2001)CrossRefGoogle Scholar
  23. 23.
    Maher, M.J.: Propositional defeasible logic has linear complexity. Theory and Practice of Logic Programming 1, 691–711 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Mann, N., Hunter, A.: Argumentation using temporal knowledge. In: COMMA 2008, pp. 204–215. IOS Press (2008)Google Scholar
  25. 25.
    Nute, D.: Defeasible logic. In: Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 3, pp. 353–395. OUP (1993)Google Scholar
  26. 26.
    Rubino, R.: Una implementazione della logica defeasible temporale per il ragionamento giuridico. PhD thesis, CIRSFID, University of Bologna (2009)Google Scholar
  27. 27.
    Rubino, R., Rotolo, A.: A Java implementation of temporal defeasible logic. In: Governatori, G., Hall, J., Paschke, A. (eds.) RuleML 2009. LNCS, vol. 5858, pp. 297–304. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  28. 28.
    Shanahan, M.: Solving the Frame Problem: A Mathematical Investigation of the Common Sense Law of Inertia. MIT Press (1997)Google Scholar
  29. 29.
    Turner, H.: Representing actions in logic programs and default theories: A situation calculus approach. Journal of Logic Programming 31(1-3), 245–298 (1997)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Guido Governatori
    • 1
  • Antonino Rotolo
    • 2
  1. 1.NICTAAustralia
  2. 2.CIRSFID and DSGUniversity of BolognaItaly

Personalised recommendations