Advertisement

Leveraging Accelerated Simulation for Floating-Point Regression

  • John Paul
  • Elena Guralnik
  • Anatoly Koyfman
  • Amir Nahir
  • Subrat K. Panda
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7857)

Abstract

Accelerated simulation (acceleration) platforms play a pivotal role in the verification of today’s complex designs. Currently, acceleration is used with either adapted pre-silicon tools or post-silicon tools. We present a novel acceleration-only tool, which enables a fast and efficientmethodology for floatingpoint regression. We overcome the lack of test-bench in this environment through self-checking.

Keywords

Test Program Point Instruction Hardware Mode Hardware Model Input Operand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    FDIV replacement program (statistical analysis of floating point flaw). Technical report (1994), http://www.intel.com/support/processors/pentium/sb/CS-013007.htm
  3. 3.
    Ludden, J.M., Rimon, M., Hickerson, B.G., Adir, A.: Advances in simultaneous multithreading testcase generation methods. In: Barner, S., Kroening, D., Raz, O. (eds.) HVC 2010. LNCS, vol. 6504, pp. 146–160. Springer, Heidelberg (2011)Google Scholar
  4. 4.
    Adir, A., Nahir, A., Ziv, A., Meissner, C., Schumann, J.: Reaching coverage closure in post-silicon validation. In: Barner, S., Kroening, D., Raz, O. (eds.) HVC 2010. LNCS, vol. 6504, pp. 60–75. Springer, Heidelberg (2011)Google Scholar
  5. 5.
    Aharoni, M., Asaf, S., Fournier, L., Koyfman, A., Nagel, R.: FPgen - a deep-knowledge test generator for floating point verification. In: Proceedings of the 8th High-Level Design Validation and Test Workshop, pp. 17–22 (2003)Google Scholar
  6. 6.
    Chen, S.-H., et al.: Hardware/software co-designed accelerator for vector graphics applications. In: 2011 IEEE 9th Symposium on Application Specific Processors (SASP), pp. 108–114 (June 2011)Google Scholar
  7. 7.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT-Press (1999)Google Scholar
  8. 8.
    Copty, S., Fine, S., Ur, S., Yom-Tov, E., Ziv, A.: A probabilistic alternative to regression suites. Theor. Comput. Sci. 404(3), 219–234 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Darringer, J., Davidson, E., Hathaway, D., Koenemann, B., Lavin, M., Morrell, J., Rahmat, K., Roesner, W., Schanzenbach, E., Tellez, G., Trevillyan, L.: EDA in IBM: past, present, and future. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 19(12), 1476–1497 (2000)CrossRefGoogle Scholar
  10. 10.
    Das, S., Mohanty, R., Dasgupta, P., Chakrabarti, P.P.: Synthesis of system verilog assertions. In: Proceedings of the Conference on Design, Automation and Test in Europe: Designers’ Forum, DATE 2006, Leuven, Belgium, pp. 70–75. European Design and Automation Association (2006)Google Scholar
  11. 11.
    Guralnik, E., Aharoni, M., Birnbaum, A.J., Koyfman, A.: Simulation-based verification of floating-point division. IEEE Trans. Computers 60(2), 176–188 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    International technology roadmap for semiconductors 2009 edition - design. Website, http://www.itrs.net/Links/2009ITRS/2009Chapters_2009Tables/2009_Design.pdf
  13. 13.
    Kalla, R., Sinharoy, B.: POWER7: IBM’s next generation balanced POWER server chip. In: Hot Chips 21 (2009)Google Scholar
  14. 14.
    Matalon, S., et al.: Building transaction-based acceleration regression environment using plan-driven verification approach, http://www.cdnusers.org/community/incisive/Vtp_dvcon2007_tbaregression.pdf
  15. 15.
    May, C., Silha, E., Simpson, R., Warren, H. (eds.): The PowerPC Architecture. Morgan Kaufmann (1994)Google Scholar
  16. 16.
    Moffitt, M.D., Günther, G.E.: Scalable scheduling for hardware-accelerated functional verification. In: ICAPS (2011)Google Scholar
  17. 17.
    Naveh, Y., et al.: Constraint-based random stimuli generation for hardware verification. In: AAAI (2006)Google Scholar
  18. 18.
    Singerman, E., et al.: Transaction based pre-to-post silicon validation. In: DAC, pp. 564–568 (2011)Google Scholar
  19. 19.
    Storm, J.: Random test generators for microprocessor design validation (2006), http://www.inf.ufrgs.br/emicro
  20. 20.
    Wile, B., Goss, J.C., Roesner, W.: Comprehensive Functional Verification - The Complete Industry Cycle. Elsevier (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • John Paul
    • 1
  • Elena Guralnik
    • 2
  • Anatoly Koyfman
    • 2
  • Amir Nahir
    • 2
  • Subrat K. Panda
    • 1
  1. 1.IBM Systems & Technology Group in BangaloreIndia
  2. 2.IBM Research in HaifaIsrael

Personalised recommendations